
(It commodore
COMPUTER==-

FIRST EDITION

THIRD PRINTING-1983

Copyright @ 1982 by Commodore Business Machines, Inc.
All rights reserved.

This manual is copyrighted and contains proprietary information. No part of this publica-
tion may be reproduced, stored in a retrieval system, or transmitted in any form or by any
means, eledronic, mechanical, photocopying, recording, or otherwise, without the prior
written permission of COMMODORE BUSINESS MACHINES, Inc.

ii

TABLE OF CONTENTS

INTRODUCTION. ix

. What's Included? . x

. How to Use This Reference Guide. " xi

. Commodore 64 ApplicationsGuide. xii

. Commodore Information Network. .. xvii

1. BASIC PROGRAMMING RULES 1
. Introduction 2

. ScreenDisplay Codes (BASIC Character Set) 2
The Operating System(OS) 2

. Programming Numbers and Variables 4
Integer, Floating-Point and String Constants.. 4
Integer, Floating-Point and String Variables. 7
Integer, Floating-Point and String Arrays 8

. Expressionsand Operators. 9

Arithmetic Expressions. 10

Arithmetic Operations. 10

Relational Operators 12
Logical Operators ~3

Hierarchy of Operations. 15

Stri ng Operations 16
String Expressions .. 17

. Programming Techniques 18
Data Conversions. 18

Using the INPUT Statement 18
Using the GET Statement. .. 22

How to Crunch BASIC Programs 24

2. BASIC LANGUAGE VOCABULARY... 29

. Introduction 30

. BASIC Keywords, Abbreviations, and Function Types 31

. Description of BASIC Keywords (Alphabetical) 35

. The Commodore 64 Keyboard and Features 93

. Screen Editor.. .. 94

iii

3. PROGRAMMING GRAPHICS ON THE
COMMODORE64 ... 99

· Graphics Overview 100

Character Display Modes .. 100
Bit Map Modes 100
Sprites 100

· GraphicsLocations 101
VideoBankSelection.. 101

Screen Memory 102
ColorMemory .1.. 103
Character Memory. .. 103

. Standard Character Mode. .. 107

Character Definitions 107

· Programmable Characters 108

. Multi-Color Mode Graphics 115
Multi-Color Mode Bit 115

. Extended Background Color Mode 120

. BitMappedGraphics... '" 121
Standard High-Resolution Bit Map Mode. 122
HowIt Works. 122

. Multi-ColorBitMap Mode. 127

. SmoothScrolling 128

. Sprites 131
Defining a Sprite 131

Sprite Poi nters .. 133

Turning Sprites On 134

Turning Sprites Off .. 135
Colors. .. 135

Multi-Color Mode 135

Setting a Sprite to Multi-ColorMode. 136

Expanded Sprites 136

Sprite Positioning 137

Sprite PositioningSummary. .. 143

SpriteDisplayPriorities.. .. 144
Collision Detects 144

. Other Graphics Features 150

Screen Blanking 150

Raster Reg ister .. 150

Interrupt Status Register. .. 151

Suggested Screen and Character Color Combinations... 152

iv

. Programming Sprites-Another Look 153
Making Sprites in BASIC-A Short Program. 153
Crunching Your Sprite Programs 156
Positioning Sprites on the Screen 157
Sprite Priorities 161

Drawing a Sprite 162
Creati ng a Sprite . . . Step by Step 163
Moving Your Sprite on the Screen. 165
VerticalScrolling.. .. 166

The Dancing Mouse-A Sprite Program Example. 166
EasySpritemakingChart.. 176
SpritemakingNotes. 177

4. PROGRAMMING SOUND AND MUSIC
ON YOUR COMMODORE 64 183. Introduction 184

Volume Control 186
Frequencies of Sound Waves. .. 186

. UsingMultipleVoices... 187
Controlling Multiple Voices 191

. Changing Waveforms .. 192

UnderstandingWaveforms..... 194
. The EnvelopeGenerator. .. 196

. Filtering 199

. Advanced Techniques. .. 202

. Synchronization and Ring Modulation 207

5. BASICTOMACHINELANGUAGE 209

. What is Machine Language? 210
What Does Machine Code Look Like? 211

Simple Memory Map of the Commodore 64 212
The Registers Inside the 6510 Microprocessor 213

. How Do You Write Machine Language Programs? 214
64MON 215

. HexadecimalNotation.. 215

Your First Machine Language Instruction 218

Writing Your First Program 220
. Addressing Modes. .. 221

Zero Page 221
The Stack .. 222

v

. Indexing 223
Indirect Indexed 223
Indexed Indirect 224

Branches and Testing. .. 226. Subroutines 228
. Useful Tips for the Beginner 229
. Approaching a Large Task. .. 230

. MCS6510 Microprocessor Instruction Set-
Alphabetic Sequence "'. .. 232

Instruction Addressing Modes and
Related Execution Times. .. 254

. Memory Management on the Commodore 64 260

. The KERNAL.. .. 268

. KERNALPower-Up Activities. .. 269

How to Use the KERNAL.. .. 270

User Callable KERNALRoutines 272
Error Codes 306

. Using Machine Language From BASIC 307
Where to Put Machine Language Routines.. 309
How to Enter Machine Language 309

. Commodore 64 MemoryMap 310

Commodore 64 Input/Output Assignments. 320

6. INPUT/OUTPUT GUIDE... .. 335

. Introduction 336

. Output to the TV .. 336

. Output to Other Devices. .. 337

Output to Printer. .. 338

Output to Modem 339
WorkingWithCassetteTape. .. 340
Data Storage on Floppy Diskettes. 342

. The Game Ports .. 343

Paddles 346
Light Pen 348

. RS-232 Interface Description 348
General Outline 348

Opening an RS-232 Channel 349
Getting Data From an RS-232 Channel 352
Sending Data to an RS-232 Channel 353
Closing an RS-232 Data Channel 354
Sample BASIC Programs. .. 356

vi

Receiver/Transmitter Buffer Base Location Pointers 357

Zero-Page Memory Locations and Usage
for RS-232System Interface. .. 358

Nonzero-Page Memory Locations and Usage
for RS-232System Interface.. .. 358

. The User Port. .. 359

Port Pin Description 359
. The Serial Bus. .. 362

Serial Bus Pinouts .. 363

. The Expansion Port .. 366

. Z-80MicroprocessorCartridge. .. 368

Using Commodore CP/M@ .. 369

Running Commodore CP/M@ .. 369

APPENDICES .. 373

A. Abbreviations for BASICKeywords. 374

B. Screen Display Codes 376
C. ASCIIand CHR$ Codes. .. 379

D. Screen and Color MemoryMaps. .. 382

E. Music Note Values. .. 384

F. Bibliography .. 388

G. VIC Chip Register Map 391
H. Deriving Mathematical Functions 394
I. Pinouts for Input/Output Devices. .. 395

J. Converting Standard BASIC Programs to
Commodore 64 BASIC 398

K. Error Messages .. 400

L. 6510 Microprocessol Chip Specifications 402
M. 6526 Complex Interface Adapter (CIA)

Chip Specifications. .. 419

N. 6566/6567 (VIC-II)Chip Specifications. 436

O. 6581 Sound Interface Device (SID) Chip Specifications. .. 457
P. Glossary 482

INDEX 483

COMMODORE 64 QUICK REFERENCECARD 487

SCHEMATIC DIAGRAM OF THE COMMODORE 64 491

vii

INTRODUCTION

The COMMODORE64 PROGRAMMER'SREFERENCEGUIDE has been

developed as a working tool and reference source for those of you who
want to maximize your use of the built-in capabilities of your COMMO-
DORE64. Thismanual contains the information you need for your pro-
grams, from the simplest example all the way to the most complex. The
PROGRAMMER'SREFERENCEGUIDE is designed so that everyone from
the beginning BASIC programmer to the professional experienced in
6502 machine language can get information to develop his or her own
creative programs. At the same time this book shows you how clever
your COMMODORE 64 really is.

This REFERENCEGUIDE is not designed to teach the BASIC pro-
gramming language or the 6502 machine language. There is, however,
an extensive glossary of terms and a "semi-tutorial" approach to many
of the sections in the book. If you don't already have a working knowl-
edge of BASIC and how to use it to program, we suggest that you study
the COMMODORE 64 USER'SGUIDE that came with your computer. The
USER'SGUIDE gives you an easy to read introduction to the BASICpro-
gramming language. If you still have difficulty understanding how to use
BASIC then turn to the back of this book (or Appendix N in the USER'S
GUIDE) and check out the Bibliography.

The COMMODORE 64 PROGRAMMER'SREFERENCEGUIDE is just
that; a reference. Like most reference books, your ability to apply the

information creatively really depends on how much knowledge you have
about the subject. In other words if you are a novice programmer you
will not be able to use all the facts and figures in this book until you
expand your current programming knowledge.

ix

What you can do with this book is to find a considerable amount of

valuable programming reference information written in easy to read,
plain English with the programmer's jargon explained. On the other
hand the programming professional will find all the information needed
to use the capabilities of the COMMODORE64 effectively.

WHAT'S INCLUDED?

. Our complete "BASIC dictionary" includes Commodore BASIC lan-
guage commands, statements and functions listed in alphabetical
order. We've created a "quick list" which contains all the words
and their abbreviations. This is followed by a section containing a
more detailed definition of each word along with sample BASIC
programs to illustrate how they work.

. If you need an introduction to using machine language with BASIC
programs our layman's overview will get you started.

. A powerful feature of all Commodore computers is called the KER-
NAL. It helps insure that the programs you write today can also be
used on your Commodore computer of tomorrow.

. The Input/Output Programming section gives you the opportunity to
use your computer to the limit. It describes how to hook-up and use
everything from lightpens and joysticks to disk drives, printers, and
telecommunication devices called modems.

. You can explore the world of SPRITES,programmable characters,
and high resolution graphics for the most detailed and advanced
animated pictures in the microcomputer industry.

. You can also enter the world of music synthesis and create your
own songs and sound effects with the best built-in synthesizer
available in any personal computer.

. If you're an experienced programmer, the soft load language sec-
tion gives you information about the COMMODORE64's ability to
run CP/M* and high level languages. This is in addition to BASIC.

Think of your COMMODORE64 PROGRAMMER'SREFERENCEGUIDE
as a useful tool to help you and you will enjoy the hours of programming
ahead of you.

.CP/M is a registered trademark of Digital Research, Inc.

x INTRODUCTION

HOW TO USE THIS REFERENCEGUIDE

Throughout this manual certain conventional notations are used to de-
scribe the syntax (programming sentence structure) of BASIC commands
or statements and to show both the required and optional parts of each

BASIC keyword. The rules to use for interpreting statement syntax are as
follows:

1. BASIC keywords are shown in capital letters. They must appear
where shown in the statement, entered and spelled exactly as shown.

2. Items shown within quotation marks (" ") indicate variable data
which you must put in. Both the quotation marks and the data
inside the quotes must appear where shown in each statement.

3. Items inside the square brackets ([]) indicate an optional state-
ment parameter. A parameter is a limitation or additional qualifier
for your statements. If you use an optional parameter you must
supply the data for that optional parameter. In addition, ellipses
(. . .) show that an optional item can be repeated as many times
as a programming line allows.

4. If an item in the square brackets ([]) is UNDERLINED,that means
that you MUST use those certain characters in the optional pa-
rameters, and they also have to be spelled exactly as shown.

5. Items inside angle brackets «» indicate variable data which you
provide. While the slash (/) indicates that you must make a choice
between two mutually exclusive options.

EXAMPLE OF SYNTAX FORMAT:

OPEN<file-num> ,<device> [,<address>], ["<drive>: <file-

name>] [,<mode>]"

EXAMPLES OF ACTUAL STATEMENTS:

10 OPEN 2,8,6,"0:STOCK FOLlO,S,W"
20 OPEN 1,1 ,2,"CHECKBOOK"
30 OPEN 3,4

When you actually apply the syntax conventions in a practical situa-
tion, the sequence of parameters in your statements might not be
exactly the same as the sequence shown in syntax examples. The
examples are not meant to show every possible sequence. They are
intended to present all required and optional parameters.

INTRODUCTION xi

Programming examples in this book are shown with blanks separating
words and operators for the sake of readability. Normally though,
BASIC doesn't require blanks between words unless leaving them out
would give you an ambiguous or incorrect syntax.

Shown below are some examples and descriptions of the symbols
used for various statement parameters in the following chapters. The list
is not meant to show every possibility, but to give you a better under-
standing as to how syntax examples are presented.

DESCRIPTION

A logical file number
A hardware device number

A serial bus secondary
device address
number

A physical disk drive number
The name of a data or program file
Literal data supplied by
the programmer
Any BASIC data variable name or
constant

Use of a string type variable required
Use of a numeric type variable
required
An actual program line number
An integer or floating-point variable

COMMODORE 64 APPLICATIONS GUIDE

When you first thought about buying a computer you probably asked
yourself, "Now that I can afford to buy a computer, what can I do with
it once I get one?"

The great thing about your COMMODORE 64 is that you can make it
do what YOU want it to do! You can make it calculate and keep track of
home and business budget needs. You can use it for word processing.
You can make it play arcade-style action games. You can make it sing.
Youcan even create your own animated cartoons, and more. The best
part of owning a COMMODORE 64 is that even if it did only one of the
things listed below it would be well worth the price you paid for it. But
the 64 is a complete computer and it does do EVERYTHINGlisted and
then some!

xii INTRODUCTION

SYMBOL EXAMPLE
<file-num> 50
<device> 4
<address> 15

<drive> 0
<file-name> "TEST. DATA"

<constant> " ABCDEFG"

<variable> X145

<string> AB$
<number> 12345

<line-number> 1000
<numeric> 1.5E4

By the way, in addition to everything here you can pick up a lot of
other creative and practical ideas by signing up with a local Commo-
dore Users' Club, subscribing to the COMMODOREand POWER/PLAY
magazines, and joining the COMMODOREINFORMATIONNETWORKon
CompuServe™ .

APPLICATION

ACTION PACKED

GAMES

ADVERTISING &

MERCHANDISING

ANIMATION

BABYSITTING

BASIC PROGRAMMING

BUSINESS
SPREADSHEET

COMMUNICATION

COMMENTS/REQUIREMENTS

You can get real Bally Midway arcade games
like Omega Race, Gorf and Wizard of Wor, as
well as "play and learn" games like Math
Teacher I, Home Babysitter and Commodore
Artist.

Hook your COMMODORE64 to a TV, put it in
a store window with a flashing, animated,
and musical message and you've got a great
point of purchase store display.

Commodore's Sprite Graphics allow you to
create real cartoons with 8 different levels so

that shapes can move in front of or behind
each other.

The COMMODORE 64 HOME BABYSITTER
cartridge can keep your youngest child occu-
pied for hours and teach alphabet/ keyboard
recognition at the same time. It also teaches
special learning concepts and relationships.

Your COMMODORE 64 USER'SGUIDE and the
TEACH YOURSELF PROGRAMMING series of

books and tapes offer an excellent starting

point.

The COMMODORE 64 offers the "Easy" series
of business aids including the most powerful

word processor and largest spreadsheet
available for any personal computer.

Enter the fascinating world of computer "net-

working." If you hook a VICMODEM to your

COMMODORE 64 you can communicate with

other computer owners all around the world.

INTRODUCTION xiii

COMPOSING SONGS

CP/M*

DEXTERITY TRAINING

EDUCATION

FOREIGN LANGUAGE

GRAPHICS AND ART

Not only that, if you join the COMMODORE
INFORMATIONNETWORKon CompuServe™
you can get the latest news and updates on
all Commodore products, financial informa-
tion, shop at home services, you can even
play games with the friends you make through
the information systems you join.

The COMMODORE 64 is equipped with the
most sophisticated built-in music synthesizer
available on any computer. It has three com-
pletely programmable voices, nine full music
octaves, and four controllable waveforms.

look for Commodore Music Cartridges and
Commodore Music books to help you create or
reproduce all kinds of music and sound effects.

Commodore offers a CP/M* add-on and ac-

cess to software through an easy-to-Ioad car-
tridge.

Hand/Eye coordination and manual dexterity
are aided by several Commodore games . . .
including "Jupiter lander" and night driving
simulation.

While working with a computer is an educa-
tion in itself, The COMMODORE Educational
Resource Book contains general information
on the educational uses of computers. We
also have a variety of learning cartridges de-
signed to teach everything from music to math
and art to astronomy.

The COMMODORE 64 programmable char-
acter set lets you replace the standard char-
acter set with user defined foreign language
characters.

In addition to the Sprite Graphics mentioned
above, the COMMODORE 64 offers high-
resolution, multi-color graphics plotting, pro-

xiv INTRODUCTION

.CP/M is a Registered trademark of Digital Research, Inc.

INSTRUMENT

CONTROl

JOURNALS AND

CREATIVE WRITING

LlGHTPEN CONTROL

MACHINE CODE
PROGRAMMING

PAYROLL & FORMS

PRINTOUT

PRINTING

RECIPES

grammable characters, and combinations of
all the different graphics and character dis-
play modes.

Your COMMODORE 64 has a serial port,
RS-232 port and a user port for use with a
variety of special industrial applications. An
IEEE/488 cartridge is also available as an op-
tional extra.

The COMMODORE 64 will soon offer an ex-

ceptional word processing system that matches
or exceeds the qualities and flexibilities of
most "high-priced" word processors available.
Of course you can save the information on
either a 1541 Disk Drive or a Datassette TM

recorder and have it printed out using a VIC-
PRINTERor PLOTTER.

Applications requiring the use of a lightpen
can be performed by any lightpen that will fit
the COMMODORE 64 game port connector.

Your COMMODORE 64 PROGRAMMER'S REF-
ERENCE GUIDE includes a machine language
section, as well as a BASIC to machine code
interface section. There's even a bibliography
available for more in-depth study.

The COMMODORE 64 can be programmed to
handle a variety of entry-type business appli-
cations. Upper~lower case letters combined
with C64 "business form" graphics make it
easy for you to design forms which can then
be printed on your printer.

The COMMODORE 64 interfaces with a vari-

ety of dot matrix and letter quality printers as
well as plotters.

You can store your favorite recipes on your
COMMODORE 64 and its disk or cassette
storage unit, and end the need for messy rec-
ipe cards that often get lost when you need
them most.

INTRODUCTION xv

SIMULATIONS Computer simulations let you conduct danger-

ous or expensive experiments at minimum risk
and cost.

SPORTS DATA The Source™ and CompuServe™ both offer
sports information which you can get using
your COMMODORE64 and a VICMODEM.

STOCK QUOTES With a VICMODEM and a subscription to any
of the appropriate network services, your
COMMODORE64 becomes your own private
stock ticker.

These are just a few of the many applications for you and your
COMMODORE64. As you can see, for work or play, at home, in school
or the office, your COMMODORE64 gives you a practical solution for
just about any need.

Commodore wants you to know that our support for users only STARTS
with your purchase of a Commodore computer. That's why we've
created two publications with Commodore information from around the
world, and a "two-way" computer information network with valuable
input for users in the U.S. and Canada from coast to coast.

In addition, we wholeheartedly encourage and support the growth of
Commodore Users' Clubs around the world. They are an excellent source
of information for every Commodore computer owner from the beginner
to the most advanced. The magazines dnd network, which are more
fully described below, have the most up-to-date information about how
to get involved with the Users' Club in your area.

Finally, your local Commodore dealer is a useful source of Commo-
dore support and information.

POWER/PLAY

The Home Computer Magazine

When it comes to entertainment, learning at home and practical home
applications, POWER/PLAYis THEprime source of information for Com-
modore home users. Find out wh,ere your nearest user clubs are and
what they're doing, learn about software, games, programming tech-

niques, telecommunications, and new products. POWER/PLAYis your
personal connection to other Commodore users, outside software and
hardware developers, and to Commodore itself. Published quarterly.
Only $10.00 for a year of home computing excitement.

xvi INTRODUCTION

COMMODORE

The Microcomputer Magazine

Widely read by educators, businessmen and students, as well as
home computerists, COMMODORE Magazine is our main vehicle for
sharing exclusive information on the more technical use of Commodore
systems. Regular departments cover business, science and education,

programming tips, "excerpts from a technical notebook," and many
other features of interest to anyone who uses or is thinking about pur-
chasing Commodore equipment for business, scientific or educational
applications. COMMODORE is the ideal complement to POWER/ PLAY.
Published bi-monthly. Subscription price: $15.00 per year.

AND FOR EVEN MORE INFORMATION . . .
. . . DIAL UP OUR PAPERLESS USER MAGAZINE

COMMODORE INFORMATION NETWORK

The magazine of the future is here. To supplement and enhance your
subscription to POWER/PLAYand COMMODOREmagazines, the COM-
MODORE INFORMATIONNETWORK-our "paperless magazine"-is
available now over the telephone using your Commodore computer and
modem.

Join our computer club, get help with a computing problem, "talk" to
other Commodore friends, or get up-to-the-minute information on new
products, software and educational resources. Soon you will even be
able to save yourself the trouble of typing in the program listings you
find in POWER/PLAYor COMMODOREby downloading direct from the
Information Network (a new user service planned for early 1983). The
best part is that most of the answers are there before you even ask the
questions. (How's that for service?)

To call our electronic magazine you need only a modem and a sub-
scription to CompuServe™, one of the nation's largest telecommunica-
tions networks. (To make it easy for you Commodore includes a FREE
year's subscription to CompuServe™ in each VICMODEM package.)

Just dial your local number for the CompuServe™ data bank and
connect your phone to the modem. When the CompuServe™ video text
appears on your screen type G CBM on your computer keyboard. When
the COMMODORE INFORMATION NETWORK'Stable of contents, or
"menu," appears on your screen choose from one of our sixteen de-
partments, make yourself comfortable, and enjoy the paperless maga-
zine other magazines are writing about.

INTRODUCTION xvii

For more information, visit your Commodore dealer or contact Com-
puServe™ customer service at 800-848-8990 (in Ohio, 614-457-8600).

COMMODORE INFORMATION NETWORK

Main Menu Description
Direct Access Codes

Special Commands
User Questions
Public Bulletin Board

Magazines and Newsletters
Products Announced

Commodore News Direct

Commodore Dealers

Educational Resources

User Groups

Descriptions
Questions and Answers

Software Tips

Technical Tips

Directory Descriptions

xviii INTRODUCTION

INTRODUCTION

This chapter talks about how BASIC stores and manipulates data. The
topics include:

1) A brief mention of the operating system components and functions
as well as the character set used in the Commodore 64.

2) The formation of constants and variables. What types of variables

there are. And how constants and variables are stored in memory.

3) The rules for arithmetic calculations, relationship tests, string han-
dling, and logical operations. Also included are the rules for form-

ing expressions, and the data conversions necessary when you're
using BASIC with mixed data types.

SCREEN DISPLAY CODES
(BASIC CHARACTER SET)

THE OPERATING SYSTEM (OS)

The Operating System is contained in the Read Only Memory (ROM)
chips and is a combination of three separate, but interrelated, program
modules.

1) The BASIC Interpreter
2) The KERNAL

3) The Screen Editor

1) The BASIC Interpreter is responsible for analyzing BASIC state-
ment syntax and for performing the required calculations and/or

data manipulation. The BASIC Interpreter has a vocabulary of 65

"keywords" which have special meanings. The upper and lower
case alphabet and the digits 0-9 are used to make both keywords

and variable names. Certain punctuation characters and special
symbols also have meanings for the Interpreter. Table 1-1 lists tl1e

special characters and their uses.

2) The KERNALhandles most of the interrupt level processing in the
system (for details on interrupt level processing, see Chapter 5).

The KERNAL also does the actual input and output of data.
3) The Screen Editor controls the output to the video screen (television

set) and the editing of BASIC program text. In addition, the Screen
Editor intercepts keyboard input so that it can decide whether the

2 BASIC PROGRAMMING RULES

CHARACTER

Table 1-1. CBM BASICCharacter Set

NAMEand DESCRIPTION

;

BLANK-separates keywords and variable names
SEMI-COLON-used in variable lists to format output
EQUAL SIGN-value assignment and relationship

testing
PLUSSIGN-arithmetic addition or string concatenation

(concatenation: linking together in a chain)
MINUS SIGN-arithmetic subtraction, unar{. minus (-1)
ASTERISK-arithmetic multiplication
SLASH-arithmetic division

UP ARROW-arithmetic exponentiation
LEFTPARENTHESIS-expression evaluatiorl and

functions

RIGHT PARENTHESIS-expression evaluatibn and
functions

PERCENT-declares variable name as ani integer
NUMBER-comes before logical file num~er in input/

output statements
DOLLARSIGN-declares variable name s a string
COMMA-used in variable lists to forma output;

also separates command para eters
PERIOD-decimal point in floating point onstants
QUOTATION MARK-encloses string cons ants
COLON-separates multiple BASICstatem nts in a line
QUESTIONMARK-abbreviation for the ke ord PRINT
LESSTHAN-used in relationship tests
GREATERTHAN-used in relationship test
PI-the numeric constant 3.141592654

=

+

-
*

/
t
(

)

%
#

$

If

?
<
>
7T

characters put in should be acted upon immediatelyl or passed on
to the BASIC Interpreter.

The Operating System gives you two modes of BASIC loperation:

1) DIRECTMode
2) PROGRAM Mode

1) When you're using the DIRECTmode, BASIC statem~nts don't have
line numbers in front of the statement. They are executed
whenever the .:~IIIIII:~/. key is pressed.

2) The PROGRAM mode is the one you use for running programs.

BASIC PROGRAMMING RULES 3

When using the PROGRAM mode, all of your BASIC statements
must have line numbers in front of them. You can have more than

one BASIC statement in a line of your program, but the number of
statements is limited by the fact that you can only put 80 char-

acters on a logical screen line. This means that if you are going to
go over the 80 character limit you have to put the entire BASIC
statement that doesn't fit on a new line with a new line number.

NOTE: Always type NEW and hit DI!IiIII before starting a new program.

The Commodore 64 has two complete character sets that you can use
either from the keyboard or in your programs.

In SET 1, the upper case alphabet and the numbers 0-9 are available

without pressing the IDIIiI key. If you hold down the IDIIiI key
while typing, the graphics characters on the RIGHT side of the front of
the keys are used. If you hold down the [i key while typing, the
graphics characters on the LEFTside of the front of the key are used.
Holding down the IDIIiI key while typing any character that doesn't
have graphic symbols on the front of the key gives you the symbol on the
top most part of the key.

In SET2, the lower case alphabet and the numbers 0-9 are available

without pressing the IDIIiI key. The upper case alphabet is available
when you hold down the IDIIiI key while typing. Again, the graphic
symbols on the LEFTside of the front of the keys are displayed by press-
ing the [i key, while the symbols on the top most part of any key
without graphics characters are selected when you hold down
the IDIIiI key while typing.

To switch from one character set to the other press the [i and
the IDIIiI keys together.

PROGRAMMING NUMBERS AND VARIABLES

INTEGER, FLOATING.POINT AND STRING CONSTANTS

Constants are the data values that you put in your BASIC statements.
BASIC uses these values to represent data during statement execution.

CBM BASIC can recognize and manipulate three types of constants:

1) INTEGER NUMBERS

2) FLOATING-POINT NUMBERS

3) STRINGS

4 BASIC PROGRAMMING RULES

Integer constants are whole numbers (numbers without decimal

points). Integer constants must be between -32768 and +32767. In-
teger constants do not have decimal points or commas between digits.
If the plus (+) sign is left out, the constant is assumed to be a positive

number. Zeros coming before a constant are ignored and shouldn't be

used since they waste memory and slow down your program. However,

they won't cause an error. Integers are stored in memory as two-byte
binary numbers. Some examples of integer constants are:

-12

8765

-32768

+44

o
-32767

NOTE: Do NOT put commas inside any number. For example, always type 32,000 as

32000. If you put a comma in the middle of a number you will get the BASIC error
message ?SYNTAX ERROR.

Floating-point constants are positive or negative numbers and can
contain fractions. Fractional ports of a number may be shown using a
decimal point. Once again remember that commas are NOT used be-
tween numbers. If the plus sign (+) is left off the front of a number, the

Commodore 64 assumes that the number is positive. If you leave off the

decimal point the computer will assume that it follows the last digit of
the number. And as with integers, zeros that come before a constant

are ignored. Floating-point constants can be used in two ways:

1) SIMPLE NUMBER

2) SCIENTIFIC NOTATION

Floating-point constants will show you up to nine digits on your screen.

These digits can represent values between -999999999. and
+999999999. If you enter more than nine digits the number will be
rounded based on the tenth digit. If the tenth digit is greater than or

equal to 5 the number will be rounded upward. Less than 5 the number
will be rounded downward. This could be important to the final totals of

some numbers you may want to work with.
Floating-point numbers are stored (using five bytes of memory) and

are manipulated in calculations with ten places of accuracy. However,

BASIC PROGRAMMING RULES 5

the numbers are rounded to nine digits when results are printed. Some
examples of simple floating-point numbers are:

1.23

-.998877

+3.1459
.7777777

-333.
.01

Numbers smaller than .01 or larger than 999999999. willbe printed in
scientific notation. In scientific notation a floating-point constant is made
up of three parts:

1) THE MANTISSA

2) THE LETTERE

3) THE EXPONENT

The mantissa is a simple floating-point number. The letter E is used to
tell you that you're seeing the number in exponential form. In other
words E represents *10 (eg., 3E3=3*10j3=3000).And the exponent is
what multiplication power of 10 the number is raised to.

Both the mantissa and the exponent are signed (+ or -) numbers.
The exponent's range is from -39 to +38 and it indicates the number of
places that the actual decimal point in the mantissa would be moved to
the left (-) or right (+) if the value of the constant were represented as
a simple number.

There is a limit to the size of floating-point numbers that BASIC can
handle, even in scientific notation: the largest number is
+1.70141183E+38 and calculations which would result in a larger
number will display the BASIC error message ?OVERFLOWERROR. The
smallest floating-point number is +2.93873588E-39 and calculations
which result in a smaller value give you zero as an answer and NO error
message. Some examples of floating-point numbers in scientific notation
(and their decimal values) are:

235.988E-3
2359E6
-7.09E-12

-3.14159E+5

(.235988)

(2359000000.)

(-.00000000000709)

(-314159.)

String constants are groups of alphanumeric information like letters,

numbers and symbols. When you enter a string from the keyboard, it
can have any length up to the space available in an 80-character line

6 BASIC PROGRAMMING RULES

(that is, any character spaces NOT taken up by the line number and
other required parts of the statement).

A string constant can contain blanks, letters, numbers, punctuation
and color or cursor control characters in any combination. You can even
put commas between numbers. The only character which cannot be in-
cluded in a string is the double quote mark ("). This is because the
double quote mark is used to define the beginning and end of the string.
A string can also have a null value-which means that it can contain no

character data. You can leave the ending quote mark off of a string if
it's the last item on a line or if it's followed by a colon (:). Some exam-
ples of string constants are:

(a null string)
"HELLO"

"$25,000.00"
"NUMBER OF EMPLOYEES"

NOTE: Use CHR$(34) to include quotes (") in strings.

INTEGER, FLOATlNG.POINT AND STRING VARIABLES

Variables are names that represent data values used in your BASIC
statements. The value represented by a variable can be assigned by
setting it equal to a constant, or it can be the result of calculations in the
program. Variable data, like constants, can be integers, floating-point
numbers, or strings. If you refer to a variable name in a program before
a value has been assigned, the BASIC Interpreter will automatically
create the variable with a value of zero if it's an integer or floating-point
number. Or it will create a variable with a null value if you're using
strings.

Variable names can be any length but only the first two characters
are considered significant in CBM BASIC. This means that all names
used for variables must NOT have the same first two characters. Vari-

able names may NOT be the same as BASIC keywords and they may
NOT contain keywords ;n the middle of variable names. Keywords in-
clude all BASIC commands, statements, function names and logical
operator names. If you accidentally use a keyword in the middle of a

variable name, the BASIC error message ?SYNTAXERRORwill show up
on your screen.

The characters used to form variable names are the alphabet and the
numbers 0-9. The first character of the name must be a letter. Data

BASIC PROGRAMMING RULES 7

type declaration characters (%) and ($) can be used as the last char-
acter of the name. The percent sign (%) declares the variable to be an

integer and the dollar sign ($) declares a string variable. If no type
declaration character is used the Interpreter will assume that the vari-
able is a floating-point. Some examples of variable names, value as-
signments and data types are:

A$="GROSS SALES"
MTH$="JAN"+A$
K%=5
CNT% =CNT% + 1
FP=12.5
SUM=FP*CNT%

(string variable)
(string variable)
(integer variable)
(integer variable)
(floating-point variable)
(floating-point variable)

INTEGER, FLOATING-POINT AND STRING ARRAYS

An array is a table (or list) of associated data items referred to by a
single variable name. In other words, an array is a sequence of related
variables. A table of numbers can be seen as an array, for example.
The individual numbers within the table become "elements" of the
array.

Arrays are a useful shorthand way of describing a large number of
related variables. Take a table of numbers for instance. Let's say that
the table has 10 rows of numbers with 20 numbers in each row. That

makes a total of 200 numbers in the table. Without a single array name
to call on you would have to assign a unique name to each value in the
table. But because you can use arrays you only need one name for the
array and all the elements in the array are identified by their individual
locations within the array.

Array names can be integers, floating-points or string data types and
all elements in the array have the same data type as the array name.
Arrays can have a single dimension (as in a simple list) or they can have
multiple dimensions (imagine a grid marked in rows and columns or a
Rubik's Cube@). Each element of an array is uniquely identified and re-
ferred to by a subscript (or index variable) following the array name,
enclosed within parentheses ().

The maximum number of dimensions an array can have in theory is
255 and the number of elements in each dimension is limited to 32767.

But for practical purposes array sizes are limited by the memory space
available to hold their data and/or the 80 character logical screen line.
If an array has only one dimension and its subscript value will never

8 BASIC PROGRAMMING RULES

exceed 10 (11 items: 0 thru 10) then the array will be created by the
Interpreter and filled with zeros (or nulls if string type) the first time any
element of the array is referred to, otherwise the BASIC DIM statement
must be used to define the shape and size of the array. The amount of
memory required to store an array can be determined as follows:

OR
OR

AND

5
+ 2
+ 2
+ 5
+ 3
+ 1

bytes for the array name
bytes for each dimension of the array
bytes per element for integers
bytes per element for floating-point
bytes per element for strings
byte per character in each string element

Subscripts can be integer constants, variables, or an arithmetic ex-
pression which gives an integer result. Separate subscripts, with com-
mas between thAm, are required for each dimension of an array. Sub-
scripts can have values from zero up to the number of elements in the
respective dimensions of the array. Values outside that range will cause
the BASIC error message ?BAD SUBSCRIPT.Some examples of array
names, value assignments and data types are:

A$(O)="GROSS SALES"
MTH$(K%)="JAN"
G2%(X)=5
CNT%(G2%(X»=CNT%(1)-2
FP(12*K%)=24.8
SUM(CNT%(1 »=FPfK%

(string array)

(string array)

(integer array)

(integer array)

(floating-point array)

(floating-point array)

A(5)=0 (sets the 5th element in the 1 dimensional

array called "A" equal to 0)

B(5,6)=0 (sets the element in row position 5 and

column position 6 in the 2 dimensional array
called "B" equal to 0)

C(1,2,3)=0 (sets the element in row position 1, column

position 2, and depth position 3 in the

3 dimensional array called "c" equal to 0)

EXPRESSIONS AND OPERATORS

Expressions are formed using constants, variables and/or arrays. An

expression can be a single constant, simple variable, or an array vari-

BASIC PROGRAMMING RULES 9

able of any type. It can also be a combination of constants and vari-
ables with arithmetic, relational or logical operators designed to
produce a single value. How operators work is explained below. Ex-
pressions can be separated into two classes:

1) ARITHMETIC

2) STRING

Expressions are normally thought of as having two or more data items
called operands. Each operand is separated by a single operator to
produce the desired result. This is usually done by assigning the value of
the expression to a variable name. All of the examples of constants and
variables that you've seen so far, were also examples of expressions.

An operator is a special symbol the BASIC Interpreter in your Com-
modore 64 recognizes as representing on operation to be performed on
the variables or constant data. One or more operators, combined with
one or more variables andlor constants form an expression. Arithmetic,
relational and logical operators are recognized by Commodore 64
BASIC.

ARITHMETIC EXPRESSIONS

Arithmetic expressions, when solved, will give an integer or floating-
point value. The arithmetic operators (+, -, *, I, t) are used to perform
addition, subtraction, multiplication, division and exponentiation opera-
tions respectively.

ARITHMETIC OPERATIONS

An arithmetic operator defines an arithmetic operation which is per-
formed on the two operands on either side of the operator. Arithmetic
operations are performed using floating-point numbers. Integers are
converted to floating-point numbers before an arithmetic operation is
performed. The result is converted back to an integer if it is assigned to
on integer variable name.

ADDITION (+): The plus sign (+) specifies that the operand on the
right is added to the operand on the left.

10 BASIC PROGRAMMING RULES

EXAMPLES:
2+2
A+B+C
X%+1
BR+l0E-2

SUBTRACTION(-): The minus sign (-) specifies that the operand on
the right is subtracted from the operand on the left.

EXAMPLES:

4-1
100-64
A-B
55-142

The minus can also be used as a unary minus. That means that it is
the minus sign in front of a negative number. This is equal to subtracting

,-~ the number from zero (0).

EXAMPLES:

-5
-~4
-B
4- (-~romeas4+2

MUIJIPLICATION(*): An asterisk (*) specifies that the operand on the
left is multiplied by the operand on the right.

EXAMPLES:

100*2

50*0

A*Xl

R%*14

DIVISION (/): The slash (/) specifies that the operand on the left is
divided by the operand on the right.

EXAMPLES:

10/2
6400/4
AlB
4E2/XR

BASIC PROGRAMMING RULES 11

EXPONENTIATION(t): The up arrow (t) specifies that the operand on
the left is raised to the power specified by the operand on the right (the

e,xponent). If the operand on the right is a 2, the number on the left is
squared; if the exponent is a 3, the number on the left is cubed, etc. The
exponent can be any number so long as the result of the operation gives
a valid floating-point number.

EXAMPLES:

2t2
3j3
4t4
ABtCD
3t-2

Equivalent to: 2*2
Equivalent to: 3*3*3
Equivalent to: 4*4*4*4

Equivalent to: V3*V3

RELATIONAL OPERATORS

The relational operators «, =, >, <=, >=, <» are primarily used

to compare the values of two operands, but they also produce an arith-
metic result. The relational operators and the logical operators (AND,
OR, and NOT), when used in comparisons, actually produce an arith-
metic true/false evaluation of an expression. If the relationship stated in
the expression is true the result is assigned an integer value of -1 and if
it's false a value of 0 is assigned. These are the relational operators:

< LESSTHAN
EQUALTO

> GREATERTHAN
< = LESSTHAN OR EQUALTO
> = GREATER THAN OR EQUAL TO

<> NOT EQUAL TO

EXAMPLES:

1=5-4
14>66
15> = 15

result true (-1)
result false (0)
result true (-1)

Relational operators can be used to compare strings. For comparison
purposes, the letters of the alphabet have the order A<B<C<D, etc.
Strings are compared by evaluating the relationship between corre-
sponding characters from left to right (see String Operations).

12 BASIC PROGRAMMING RULES

EXAMPLES:

"A" < "BII

"X" = IIYYII

result true (- 1)
result false (0)

BB$ <> CC$

Numeric data items can only be compared (or assigned) to other
numeric items. The same is true when comparing strings, otherwise the
BASIC error message ?TYPEMISMATCHwill occur. Numeric operands
are compared by first converting the values of either or both operands
from integer to floating-point form, as necessary. Then the relationship
of the floating-point values is evaluated to give a true/false result.

At the end of all comparisons, you get an integer no matter what
data type the operand is (even if both are strings). Because of this, a
comparison of two operands can be used as an operand in performing
calculations. The result will be -lor 0 and can be used as anything but
a divisor, since division by zero is illegal.

LOGICAL OPERATORS

The logical operators (AND, OR, NOT) can be used to modify the
meanings of the relational operators or to produce an arithmetic result.
Logical operators can produce results other than -1 and 0, though any
nonzero result is considered true when testing for a true/false condition.

The logical operators (sometimes called Boolean operators) can also
be used to perform logic operations on individual binary digits (bits) in
two operands. But when you're using the NOT operator, the operation is
performed only on the single operand to the right. The operands must
be in the integer range of values (-32768 to +32767) (floating-point

numbers are converted to integers) and ~ogical operations give an in-
teger result.

Logical operations are performed bit-by-corresponding-bit on the two
operands. The logical AND produces a bit result of 1 only if both
operand bits are 1. The logical OR produces a bit result of 1 if either
operand bit is 1. The logical NOT is the opposite value of each bit as a
single operand. In other words, it's really saying, "If it's NOT 1 then it is
O. If it's NOT 0 then it is. 1."

The exclusive OR (XOR) doesn't have a logical operator but it is per-

formed as part of the WAITstatement. Exclusive OR means that if the bits of
two operands are equal then the result is 0 otherwise the result is 1.

Logical operations are defined by groups of statements which, taken
together, constitute a Boolean "truth table" as shown in Table 1-2.

BASIC PROGRAMMING RULES 13

Table 1-2. Boolean Truth Table

The AND operation results in a 1 only if both bits are 1:

1 AND 1 = 1
o AND 1 = 0

1 AND 0 = 0
o AND 0 = 0

The OR operation results in a 1 if either bit is 1:

lOR 1 = 1
o OR 1 = 1

lOR 0 = 1
o OR 0 = 0

The NOT operation logically complements each bit:

NOT 1 = 0
NOT 0 = 1

The exclusive OR (XOR) is part of the WAIT statement:

1 XOR 1 = 0
1 XOR 0 = 1
o XOR 1 = 1

o XOR 0 = 0

The logical operators AND, OR and NOT specify a Boolean arithmetic
operation to be performed on the two operand expressions on either
side of the operator. In the case of NOT, ONLY the operand on the
RIGHT is considered. logical operations (or Boolean arithmetic) aren't
performed until all arithmetic and relational operations in an expression
have been completed.

EXAMPLES:

IF A=100 AND B=100 THEN 10 (if both A and B have a value
of 100 then the result is

true)

A=96 AND 32: PRINT A (A = 32)

14 BASIC PROGRAMMING RULES

IF A=100 OR B=100 THEN20 (if A or B is 100 then the
result is true)

A=64 OR 32: PRINT A (A = 96)

IF NOT X<Y THEN 30 (if x> =Y the result is true)

X= NOT96 (result is -97 (two's complement»

HIERARCHY OF OPERATIONS

All expressions perform the different types of operations according to
a fixed hierarchy. In other words, certain operations are performed be-
fore other operations. The normal order of operations can be modified
by enclosing two or more operands within parentheses (), creating a
"subexpression." The parts of an expression enclosed in parentheses will
be reduced to a single value before working on parts outside the par-
entheses.

When you use parentheses in expressions, they must be paired so that
you always have an equal number of left and right parentheses.
Otherwise, the BASIC error message ?SYNTAX ERRORwill appear.

Expressions which have operands inside parentheses may themselves
be enclosed in parentheses, forming complex expressions of multiple
levels. This is called nesting. Parentheses can be nested in expressions
to a maximum depth of ten levels-ten matching sets of parentheses.
The inner-most expression has its operations performed first. Some
examples of expressions are:

A+B

cj(D+E)/2
«X -cj(D+E)/2)* 10)+ 1
GG$>HH$
JJ$+"MORE"
K%=l AND M<>X
K%=2 OR (A=B AND M<X)
NOT (D=E)

The BASIC Interpreter will normally perform operations on expressions
by performing arithmetic operations first, then relational operations, and
logical operations last. Both arithmetic and logical operators have an

BASICPROGRAMMINGRULES 15

order of precedence (or hierarchy of operations) within themselves. On
the other hand, relational operators do not have an order of precedence
and will be performed as the expression is evaluated from left to right.

If all remaining operators in an expression have the same level of
precedence then operations happen from left to right. When performing
operations on expressions within parentheses, the normal order of pre-
cedence is maintained. The hierarchy of arithmetic and logical opera-
tions is shown in Table 1-3 from first to last in order of precedence.

Table 1-3. Hierarchy of Operations Performed on Expressions

STRING OPERATIONS

Strings are compared using the same relational operators (=, <>,
<=, >=, <, » that are used for comparing numbers. String compari-
sons are made by taking one character at a time (Ieft-to-right) from
each string and evaluating each character code position from the PETI
CBM character set. If the character codes are the same, the characters
are equal. If the character codes differ, the character with the lower
code number is lower in the character set. The comparison stops when

16 BASIC PROGRAMMING RULES

OPERATOR DESCRIPTION EXAMPLE

t Exponentiation BASE t EXP

- Negation (Unary Minus) -A

* I Multiplication AB * CD
Division EF I GH

+- Addition CNT + 2
Subtraction JK - PO

>=< Relational Operations A <= B

NOT Logical NOT NOT K%

(Integer Two's Complement)

AND Logical AND JK AND 128

OR Logical OR PO OR 15

the end of either string is reached. All other things being equal, the
shorter string is considered less than the longer string. Leading or trail-

ing blanks ARE significant.

Regardless of the data types, at the end of all comparisons you get

an integer result. This is true even if both operands are strings. Because

of this a comparison of two string operands can be used as an operand

in performing calculations. The result will be -lor 0 (true or false) and
can be used as anything but a divisor since division by zero is illegal.

STRING EXPRESSIONS

Expressions are treated as if an implied "<>0" follows them. This
means that if an expression is true then the next BASIC statements on.

the same program line are executed. If the expression is false the rest of
the line is ignored and the next line in the program is executed.

Just as with numbers, you can also perform operations on string vari-

ables. The only string arithmetic operator recognized by CBM BASIC is
the plus sign (+) which is used to perform concatenation of strings.
When strings are concatenated, the string on the right of the plus sign is

appended to the string on the left, forming a third string as a result. The
result can be printed immediately, used in a comparison, or assigned to
a variable name. If a string data item is compared with (or set equal to)
a numeric item, or vice-versa, the BASIC error message ?TYPE MIS-
MATCH will occur. Some examples of string expressions and concatena-

tion are:

10 A$="FILE" : B$="NAME"
20 NAM$ = A$ + B$
30 RES$= "NEW " + A$

1

(gives the string: FILENAME)

+ B$ (gives the string: NEW FILENAME)

Note space here. I

BASIC PROGRAMMING RULES 17

PROGRAMMING TECHNIQUES

DATA CONVERSIONS

When necessary, the CBM BASIC Interpreter will convert a numeric
data item from an integer to floating-point, or vice-versa, according to
the following rules:

. All arithmetic and relational operations are performed in floating-
point format. Integers are converted to floating-point form for
evaluation of the expression, and the result is converted back to
integer. logical operations convert their operands to integers and
return an integer result.

. If a numeric variable name of one type is set equal to a numeric
data item of a different type, the number will be converted and
stored as the data type declared in the variable name.

. When a floating-point value is converted to an integer, the frac-
tional portion is truncated (eliminated) and the integer result is less
than or equal to the floating-point value. If the result is outside the
range of +32767 thru -32768, the BASICerror message ?ILLEGAL
QUANTITY will occur.

USING THE INPUT STATEMENT

Now that you know what variables are, let's take that information and
put it together with the INPUT statement for some practical program-
ming applications.

In our first example, you can think of a variable as a "storage com-
partment" where the Commodore 64 stores the user's response to your
prompt question. To write a program which asks the user to type in a
name, you might assign the variable N$ to the name typed in. Now
every time you PRINT N$ in your program, the Commodore 64 will
automatically PRINT the name that the user typed in.

Type the word NEW on your Commodore 64. Hit the .:~;aIlI:~I. key,

and try this example:

10 PRINT ''YOUR NAME":INPUT N$
20 PRINT "HEllO," N$

18 8ASIC PROGRAMMINGRULES

In this example you used N to remind yourself that this variable stands
for "NAME." The dollar sign ($) is used to tell the computer that you're
using a string variable. It is important to differentiate between the two
types of variables:

1) NUMERIC

2) STRING

You probably remember from the earlier sections that numeric vari-
ables are used to store number values such as 1, 100, 4000, etc. A

numeric variable can be a single letter (A), any two letters (AB), a letter
and a number (A1), or two letters and a number (AB1). You can save
memory space by using shorter variables. Another helpful hint is to use
letters and numbers for different categories in the same program (A1,
A2, A3). Also, if you want whole numbers for an answer instead of
numbers with decimal points, all you have to do is put a percent sign
(%) at the end of your variable name (AB%, Al%, etc.)

Now let's look at a few examples that use different types of variables
and expressions with the INPUT statement.

10 PRINT "ENTER A NUMBER":INPUT A

20 PRINT A

10 PRINT "ENTER A WORD":INPUT A$
20 PRINT A$

10 PRINT "ENTER A NUMBER":INPUT A

20 PRINT A "TIMES 5 EQUALS" A*5

NOTE: Example 3 shows that MESSAGES or PROMPTS are inside the quotation
marks (" ") while the variables are outside. Notice, too, that in line 20 the variable A

was printed forst, then the message "TIMES 5 EQUALS", and then the calculation,
multiply variable A by 5 (A*5).

Calculations are important in most programs. You have a choice of
using "actual numbers" or variables when doing calculations, but if
you're working with numbers supplied by a user you must use numeric
variables. Begin by asking the user to type in two numbers like this:

10 PRINT "TYPE 2 NUMBERS":INPUT A:INPUT B

BASIC PROGRAMMING RULES 19

INCOME/EXPENSEBUDGETEXAMPLE

5 F'RUn ":1!:.-~~
1121PRINT"MONTHLY INCOME":INPUT IN
2121PRINT
30 PRnn"n:PEt-jSE CATEGORY 1": WPUT El$
4121 PRun" E:><;PENSEAMOUNT": INPUT E 1
50 PRINT
6121PRINT"EXPENSE CATEGOR'T' 2": UjPUT E2$
70 PRun"EXPENSE AMOUNT": INPUT E2
80 PRINT
9121PRun"E:";PEt~SE CATEGORY 3": mpUT E3$
100 PRINT"EXPENSE At10UrH": INPUT E3
lie PRINT ":1~rBIImm
12121 E=E 1+E2+E:3
13121 EP=E/ I t~
140 PRINT"MONTHLY INCOME:
15121PR un" TOTAL EXPErjSES:
16121 PRINT"BALANCE EQUALS:
17121F'RItH
18121PRIt~T El$"=" (E1/E>:t.100";,: OF TOTAL EXPENSES"
190 PRItH E2$"=" (E2/E>,U00";-; OF TOTAL EXPEr~SES"
2121121PRINTE3$"=" (E3/E>:4I.10121";-; OF TOTAL EXPENSES"
21121 PRUH
22121 PR nn" 'T'OUR E:":PErjSES=" EP*, 11210";-; OF YOUR TOTAL
INCOME"
23121 FOR X=lT0501210:NEXT:PRINT
240 PRUn"F.:EPEAT? ('T' OR rD": INPUT 'T'$: IF Y$="Y"THEN5
25121 PRINT ":1":END

'ImIrBIImm

$"IN
$"E
$"Uj-E

NOTE: IN can NOT = 0, and El, E2, E3 can NOT all be 0 at the some time.

20 BASIC PROGRAMMING RULES

LlNE-BY-LiNEEXPLANAnON OF
INCOME/EXPENSEBUDGETEXAMPLE

Now multiply those two numbers together to create a new variable C as
shown in line 20 below:

20 C=A*B

To PRINT the result as a message type

30 PRINT A ''TIMES'' B "EQUALS" C

Enter these 3 lines and RUN the program. Notice that the messages are
inside the quotes while the variables are not.

BASIC PROGRAMMING RULES 21

line(s} Description

5 Clears the screen.
10 PRINT/INPUT statement.
20 Inserts blank line.
30 Expense Category 1 = E1$.
40 Expense Amount = E1.
50 Inserts blank line.
60 Expense Category 2 = E2$.
70 Expense Amount 2 = E2.
80 Inserts blank line.
90 Expense Category 3 = E3$.

100 Expense Amount 3 = E3.
110 Clears the screen.
120 Add Expense Amounts = E.
130 Calculate Expense/lncome%.
140 Display Income.
150 Display Total Expenses.
160 Display Income - Expenses.
170 Inserts blank line.
180-200 Lines 180-200 calculate % each expense

amount is of total expenses.
210 Inserts blank line.
220 Display Ell %.
230 Time delay loop.

Now let's say that you wanted a dollar sign ($) in front of the number

represented by variable C. The $ must be PRINTed inside quotes and in
front of variable C. To add the $ to your program hit the .:411~'Ao"tI'I:.JI
and .:I:I."tIlI:I:8 keys. Now type in line 40 as follows:

40 PRINT "$" C

Now hit 8:1:1111:118,type RUN and hit 8:1:1111:118again.
The dollar sign goes in quotes because the variable C only represents

a number and can't contain a $. If the number represented by C was
100 then the Commodore 64 screen would display $ 100. But, if you
tried to PRINT $C without using the quotes, you would get a ?SYNTAX
ERRORmessage.

One last tip about $$$: You can create a variable that represents a
dollar sign which you can then substitute for the $ when you want to use
it with numeric variables. For example:

10 Z$="$"

Now whenever you need a dollar sign you can use the string variable
Z$. Try this:

10 Z$="$":INPUT A
20 PRINT Z$A

Line 10 defines the $ as a string variable called Z$, and then INPUTs a
number called A. Line 20 PRINTs Z$ ($) next to A (number).

You'll probably find that it's easier to assign certain characters, like
dollar signs, to a string variable than to type "$" every time you want to
calculate dollars or other items which require" " like %.

USING THE GET STATEMENT

Most simple programs use the INPUT statement to get data from the
person operating the computer. When you're dealing v/ith more complex
needs, like protection from typing errors, the GET statement gives you
more flexibility and your program more "intelligence." This section shows
you how to use the GET statement to add some special screen editing
features to your programs.

22 BASIC PROGRAMMING RULES

The Commodore 64 has a keyboard buffer that holds up to 10 char-
acters. This means that if the computer is busy doing some operation
and it's l10t reading the keyboard, you can still type in up to 10 char-
acters, which will be used as soon as the Commodore 64 finishes what it
was doing. To demonstrate this, type in this program on your Commo-
dore 64:

NEW
10 TI$="OOOOOO"
20 IF TI$ < "000015" THEN20

Now type RUN, hit .:j:llll:jl_ and while the program is RUNning type
in the word HELLO.

Notice that nothing happened for about 15 seconds when the pro-
gram started. Only then did the message HELLOappear on the screen.

Imagine standing in line for a movie. The first person in the line is the
first to get a ticket and leave the line. The last person in line is last for a
ticket. The GET statement acts like a ticket taker. First it looks to see if

there are any characters "in line." In other words have any keys been
typed. If the answer is yes then that character gets placed in the ap-
propriate variable. If no key was pressed then an empty value is as-
signed to a variable.

At this point it's important to note that if you try to put more than 10
characters into the buffer at one time, all those over the 10th character
will be lost.

Since the GET statement will keep going even when no character is

typed, it is often necessary to put the GETstatement into a loop so that it
will have to wait until someone hits a key or until a character is received

through tour program.Below is the recommended form for the GET statement. Type NEW to

erase your previous program.

10 GET A$: IF A$ = "" THEN 10

Notice that there is NO SPACEbetween the quote marks ("") on this line.
This indicates an empty value and sends the program back to the GET
statement in a continuous loop until someone hits a key on the computer.

Once a key is hit the program will continue with the line following line
10. Add this line to your program:

100 PRINT A$j: GOTO 10

BASIC PROGRAMMING RULES 23

Now RUN the program. Notice that no cursor. appears on the screen,

but any character you type will be printed in the screen. This 2-line

program can be turned into part of a screen editor program as shown
below.

There are many things you can do with a screen editor. You can have

a flashing cursor. You can keep certain keys like (1I.:..t:I'I~II:a from

accidentally erasing the whole screen. You might even want to be able
to use your function keys to represent whole words or phrases. And

speaking of function keys, the following program lines give each func-

tion key a special purpose. Remember this is only the beginning of a
program that you can customize for your needs.

20 IF A$ =
30 IF A$ =
40 IF A$
50 IF A$ =

CHR$(133) THEN POKE 53280,8:GOTO 10

CHR$(134) THEN POKE 53281,4:GOTO 10
CHR$(135) THEN A$="DEAR SIR:"+CHR$(13)

CHR$(136) THEN A$="SINCERELY,"+CHR$(13)

The CHR$ numbers in parentheses come from the CHR$ code chart in

Appendix C. The chart lists a different number for each character. The

four function keys are set up to perform the tasks represented by the
instructions that follow the word THEN in each line. By changing the
CHR$ number inside each set of parentheses you can designate differ-

ent keys. Different instructions would be performed if you changed the
information after the THEN statement.

HOW TO CRUNCH BASIC PROGRAMS

You can pack more instructions-and power-into your BASIC pro-

grams by making each program as short as possible. This process of
shortening programs is called "crunching."

Crunching programs lets you squeeze the maximum possible number

of instructions into your program. It also helps you reduce the size of
programs which might not otherwise run in a given size; and if you're
writing a program which requires the input of data such as inventory
items, numbers or text, a short program will leave more memory space
free to hold data.

ABBREVIATING KEYWORDS

A list of keyword abbreviations is given in Appendix A. This is helpful
when you program because you can actually crowd more information on
each line using abbreviations. The most frequently used abbreviation is

24 BASIC PROGRAMMING RULES

the question mark (?) which is the BASIC abbreviation for the PRINT
command. However, if you LISTa program that has abbreviations, the
Commodore 64 will automatically print out the listing with the full-length
keywords. If any program line exceeds ao characters (2 lines on the
screen) with the keywords unabbreviated, and you want to change it,
you will have to re-enter that line with the abbreviations before saving
the program. SAVEing a program incorporates the keywords without
inflating any lines because BASIC keywords are tokenized by the Com-
modore 64. Usually, abbreviations are added after a program is written
and it isn't going to be LISTed any more before SAVEing.

SHORTENING PROGRAM LINE NUMBERS

Most programmers start their programs at line 100 and number each
line at intervals of 10 (i.e., 100, 110, 120). This allows extra lines of
instruction to be added (111, 112, etc.) as the program is developed.
One means of crunching the program after it is completed is to change
the line numbers to the lowest numbers possible (i.e., 1, 2, 3) because
longer line numbers take more memory than shorter numbers when ref-
erenced by GOTO and GOSUB statements. For instance, the number 100
uses 3 bytes of memory (one for each number) while the number 1 uses
only 1 byte.

PUTTING MULTIPLE INSTRUCTIONS ON EACH LINE

You can put more than one instruction on each numbered line in your
program by separating them by a colon. The only limitation is that all
the instructions on each line, including colons, should not exceed the
standard aO-character line length. Here is an example of two programs,
before and after crunching:

BEFORE CRUNCHING: AFTER CRUNCHING:

10 PRINT "HELLO. . .";
20 FOR T=l TO 500:NEXT
30 PRINT "HELLO, AGAIN
40 GOTO 10

"

10 PRINT "HELLO . . .";:FORT=lTO
500:N EXT:PRINT"HELLO,
AGAIN. . .":GOT010

REMOVING REM STATEMENTS

REM statements are helpful in reminding yourself-or showing other
programmers-what a particular section of a program is doing. How-
ever, when the program is completed and ready to use, you probably

BASIC PROGRAMMING RULES 25

won't need those REMstatements anymore and you can save quite a bit
of space by removing the REM statements. If you plan to revise or study
the program structure in the future, it's a good idea to keep a copy on
file with the REM statements intact.

USING VARIABLES

If a number, word or sentence is used repeatedly in your program it's
usually best to define those long words or numbers with a one or two
letter variable. Numbers can be defined as single letters. Words and
sentences can be defined as string variables using a letter and dollar
sign. Here's one example:

BEFORE CRUNCHING: AFTER CRUNCHING:

10 POKE 54296,15
20 POKE 54276,33
30 POKE 54273,10
40 POKE 54273,40
50 POKE 54273,70
60 POKE 54296,0

10 V=54296:F=54273

20 POKEV,15:POKE54276,33
30 POKEF,10:POKEF,40:POKEF,70
40 POKEV,O

USING READ AND DATA STATEMENTS

large amounts of data can be typed in as one piece of data at a
time, over and over again. . . or you can print the instructional part of
the program ONCE and print all the data to be handled in a long run-
ning list called the DATAstatement. This is especially good for crowding
large lists of numbers into a program.

USING ARRAYS AND MATRICES

Arrays and matrices are similar to DATA statements in that long
amounts of data can be handled as a list, with the data handling por-
tion of the program drawing from that list, in sequence. Arrays differ in
that the list can be multi-dimensional

ELIMINATING SPACES

One of the easiest ways to reduce the size of your program is to
eliminate all the spaces. Although we often include spaces in sample
programs to provide clarity, you actually don't need any spaces in your
program and will save space if you eliminate them.

26 BASIC PROGRAMMING RULES

USING GOSUB ROUTINES

If you use a particular line or instruction over and over, it might be
wise to GOSUB to the line from several places in your program, rather
than write the whole line or instruction every time you use it.

USING TAB AND SPC

Instead of PRINTing several cursor commands to position a character
on the screen, it is often more economical to use the TAB and SPC in-

structions to position words or characters on the screen.

BASIC PROGRAMMING RULES 27

INTRODUCTION

This chapter explains CBM BASIC Language keywords. First we give
you an easy to read list of keywords, their abbreviations and what each
letter looks like on the screen. Then we explain how the syntax and
operation of each keyword works in detail, and examples are shown to
give you an idea as to how to use them in your programs.

As a convenience, Commodore 64 BASIC allows you to abbreviate
most keywords. Abbreviations are entered by typing enough letters of
the keyword to distinguish it from all other keywords, with the last letter
or graphics entered holding down the IIIiI key.

Abbreviations do NOT save any memory when they're used in pro-
grams, because all keywords are reduced to single-character "tokens"
by the BASIC Interpreter. When a program containing abbreviations is
listed, all keywords appear in their fully spelled form. You can use ab-
breviations to put more statements onto a program line even if they
won't fit onto the aO-character logical screen line. The Screen Editor
works on an aO-character line. This means that if you use abbreviations
on any line that goes over ao characters, you will NOT be able to edit
that line when LISTed. Instead, what you'll have to do is (1) retype the
entire line including all abbreviations, or (2) break the single line of code
into two lines, each with its own line number, etc.

A complete list of keywords, abbreviations, and their appearance on
the screen is presented in Table 2-1. They are followed by an alpha-
betical description of all the statements, commands, and functions
available on your Commodore 64.

This chapter also explains the BASIC functions built into the BASIC
Language Interpreter. Built-in functions can be used in direct mode
statements or in any program, without having to define the function
further. This is NOT the case with user-defined functions. The results of

built-in BASICfunctions can be used as immediate output or they can be
assigned to a variable name of an appropriate type. There are two
types of BASIC functions:

1) NUMERIC

2) STRING

Arguments of built-in functions are always enclosed in parentheses
(). The parentheses always come directly after the function keyword
and NO SPACES between the last letter of the keyword and the left
parenthesis (.

30 BASIC LANGUAGE VOCABULARY

Thetype of argument needed is generally decided by the data type in
the result. Functions which return a string value as their result are iden-
tified by having a dollar sign ($) as the last character of the keyword. In
some cases string functions contain one or more numeric argument.

Numeric functions will convert between integer and floating-point
format as needed. In the descriptions that follow, the data type of the
value returned is shown with each function name. The types of argu-
ments are also given with the statement format.

Table 2-1. COMMODORE64 BASICKEYWORDS

BASIC LANGUAGE VOCABULARY 31

COMMAND ABBREVIATION SCREEN FUNCTION TYPE

ABS A IDIIiI B Am NUMERIC

AND A BIIiI N AIZJ

ASC A EIIIiI S A NUMERIC

ATN ABIIiI T AD NUMERIC

CHR$ C IDIIiI H C [] .STRING

CLOSE CLEIIIiI 0 CL 0
CLR C BIIiI L C 0
CMD CEIIIiIM C lSI

CONT c.BII 0 C 0
COS none COS NUMERIC

DATA D IDIIiIA D I!I

DEF D_ E D EJ

DIM D_ I D f;J

'32 BASIC LANGUAGE VOCABULARY

COMMAND ABBREVIATION SCREEN FUNCTION TYPE

END E IDID N E 0
EXP E Emil x E NUMERIC

FN none FN

'FOR F BIIiI 0 F 0
FRE F ,BIIiI R F Q NUMERIC

GET G,EDIIII E G EJ

GET# none GET#

GOSUB GO BIIiI S GO

GOTO G ,BIIiI 0 GO

IF none IF

INPUT none INPUT

INPUT# I 'BIIiI N I 0
INT none INT NUMERIC

lEFT$ LE IDID F LE g STRING

LEN none LEN NUMERIC

LET L EIDIiI E L D
LIST L EIDIiI I L

LOAD L BID 0 L 0
LOG 'none LOG NUMERIC

BASICLANGUAGE VOCABULARY 33

COMMAND ABBREVIATION SCREEN FUNCTION TYPE

MID$ M IIID I M EJ STRING

NEW none NEW

NEXT N IIID E N EI

NOT N BIID 0 N 0
ON none ON

OPEN o BIID P 00

OR none OR

PEEK P IIID E pEJ NUMERIC

POKE P BIID 0 P 0

POS none POS NUMERIC

PRINT ? ?

PRINT# P IIID R P bJ

READ R IIID E R E]

REM none REM

RESTORE RE IIID S RE

RETURN RE BIID T RE [[]

RIGHT$ R BIID I R S RING

RND R BIID N R 0 NUMERIC

RUN REmlU R CLI

34 BASIC LANGUAGE VOCABULARY

COMMAND ABBREVIATION SCREEN FUNCTION TYPE

SAVE S BIID A S

SGN S _ G slIJ NUMERIC

SIN S_ I S&J NUMERIC

SPC(S_ P sO SPECIAL

SQR S _ Q sill NUMERIC

STATUS ST ST NUMERIC

STEP ST_ E ST B
STOP S _ T slIJ

STR$ STBIIiI R ST g STRING

SYS S BIID Y s[]

TAB(T BIIiI A T[!] SPECIAL

TAN none TAN NUMERIC

THEN TIIDH T[]

TIME TI TI NUMERIC

TlME$ TI$ TI$ STRING

TO none TO

USR U _ S U NUMERIC

VAL V EIIIiI A V NUMERIC

VERIFY V _ E VU

WAIT WBIIiIA W

DESCRIPTION OF BASIC KEYWORDS

ABS

TYPE: Function-Numeric
FORMAT: ABS(<expression»

Action: Returns the absolute value of the number, which is its value
without any signs. The absolute value of a negative number is that
number multiplied by -1.

EXAMPLESof ABS Function:

10 X = ABS (Y)
10 PRINT ABS (X * J)
10 IF X = ABS (X) THEN PRINT "POSITIVE"

AND

TYPE: Operator
FORMAT: <expression> AND <expression>

Action: AND is used in Boolean operations to test bits. It is also used
in operations to check the truth of both operands.

In Boolean algebra, the result of an AND operation is 1 only if both
numbers being ANDed are 1. The result is 0 if either or both is 0 (false).

EXAMPLESof l-Bit AND Operation:

o
AND0

o

1
AND 0

o

o
AND1

o

1
AND 1

1

The Commodore 64 performs the AND operation on numbers in the
range from -32768 to +32767. Any fractional values are not used, and
numbers beyond the range will cause an ?ILLEGAL QUANTITY error

BASIC LANGUAGE VOCABULARY 35

message. When converted to binary format, the range allowed yields 16
bits for each number. Corresponding bits are ANDed together, forming
a 16-bit result in the same range.

EXAMPLESof 16-Bit AND Operation:

17
AND 194

0000000000010001
AND 0000000011 00001 0

(BINARY)0000000000000000

(DECIMAL) o

32007
AND 28761

0111110100000111
AND 0111 000001011 001

(BINARY)0111000000000001

(DECIMAL) 28673

-241
AND 15359

11111111 00001111
AND 0011101111111111

(BINARY) 0011101100001111

(DECIMAL) 15119

36 BASICLANGUAGEVOCABULARY

When evaluating a number for truth or falsehood, the computer as-
sumes the number is true as long as its value isn't O. When evaluating a
comparison, it assigns a value of -1 if the result is true, while false has

a value of O. In binary format, -1 is all l's and 0 is all O's. Therefore,
when ANDing true/false .evaluations, the result will be true if any bits in
the result are true.

EXAMPLESof Using AND with True/False Evaluations:

50 IF X=7 AND W=3 THENGOTO 10: REMONLYTRUEIF BOTH X=7
AND W=3 ARETRUE-

60 IF A AND Q=7 THEN GOTO 10: REMTRUE IF A IS NON-ZERO
AND Q=7 IS TRUE

ASC

TYPE: Function-Numeric
FORMAT:ASC (<string>)

Action: ASC will return a number from 0 to 255 which corresponds to
the Commodore ASCII value of the first character in the string. The table
of Commodore ASCII values is shown in Appendix C.

EXAMPLESOF ASC Function:

10 PRINTASq"Z")
20 X = ASC("ZEBRA")
30 J = ASqJ$)

If there are no characters in the string, an ?ILLEGALQUANTITY error
results. In the third example above, if J$="", the ASCfunction will not
work. The GETand GET# statement read a CHR$(O)as a null string. To
eliminate this problem, you should add a CHR$(O) to the end of the
string as shown below.

EXAMPLEof ASC Function Avoiding ILLEGALQUANTITY ERROR:

30 J = ASqJ$ + CHR$(O»

BASIC LANGUAGE VOCABULARY 37

ATN

TYPE: Function-Numeric
FORMAT: ATN (<number>)

Action: This mathematical function returns the arctangent of the
number. The result is the angle (in radians) whose tangent is the number
given. The result is always in the range -1T/2 to +1T/2.

EXAMPLESof ATN Function:

10 PRINT ATN (0)
20 X = ATN (J) * 180 / 1T : REM CONVERT TO DEGREES

CHR$

TYPE: Function-String
FORMAT:CHR$ (<number>)

Action: This function converts a Commodore ASCII code to its char-

acter equivalent. See Appendix C for a list of characters and their
codes. The number must have a value between 0 and 255, or an ?IL.
LEGAL QUANTITY error message results.

EXAMPLESof CHR$ Function:

10 PRINT CHR$(65) : REM65 = UPPERCASEA
20 A$ = CHR$(13) : REM 13 = RETURNKEY
50 A = ASC(A$) : A$ = CHR${A): REM CONVERTSTO C64 ASCII

CODe AND BACK

38 BASIC LANGUAGE VOCABULARY

CLOSE

TYPE: I/O Statement
FORMAT:CLOSE <file number>

Action: This statement shuts off any data file or channel to a device.
The file number is the same as when the file or device was OPENed (see
OPEN statement and the section on INPUT/OUTPUTprogramming).

When working with storage devices like cassette tape and disks, the
CLOSE operation stores any incomplete buffers to the device. When this
is not performed, the file will be incomplete on the tape and unreadable
on the disk. The CLOSE operation isn't as necessary with other devices,
but it does free up memory for other files. See your external device
manual for more details.

EXAMPLESof CLOSEStatement:

10 CLOSE 1
20 CLOSE X

30 CLOSE 9 * (1 + J)

CLR

TYPE: Statement
FORMAT:CLR

Action: This statement makes available RAMmemory that had been
used but is no longer needed. Any BASIC program in memory is un-
touched, but all variables, arrays, GOSUB addresses, FOR. . . NEXT
loops, 'user-deflned functions, and files are erased from memory, and
their space is made available to new variables, etc.

BASIC LANGUAGE VOCABULARY 39

In the case of files to the disk and cassette tape, they are not properly
CLOSEd by the CLR statement. The information about the files is lost to

the computer, including any incomplete buffers. The disk drive will still
think the file is OPEN. See the CLOSE statement for more information on
this.

EXAMPLEof CLR Statement::

10 X=25
20 CLR
30 PRINT X

RUN
o

READY

CMD

TYPE: I/O Statement
FORMAT:CMD <file number> [, string]

Adion: This statement switches the primary output device from the TV
screen to the file specified. This file could be on disk, tape, printer, or an
I/O device like the modem. The file number must be specified in a prior
OPEN statement. The string, when specified, is sent to the file. This is
handy for titling printouts, etc.

When this command is in effect, any PRINT statements and LISTcom-
mands will not display on the screen, but will send the text in the same
format to the file.

To re-direct the output back to the screen, the PRINT# command
should send a blank line to the CMD device before CLOSEing, so it will
stop expecting data (called "un-listening" the device).

40 BASIC LANGUAGE VOCABULARY

Any system error (like ?SYNTAX ERROR)will cause output to return to
the screen. Devices aren't un-listened by this, so you should send a
blank line after an error condition. (See your printer or disk manual for
more details.)

EXAMPLESof CMD Statement:

OPEN 4, 4: CMD 4, "TITLE" : LIST: REM LISTS PROGRAM ON PRINTER

PRINT# 4: CLOSE 4: REM UN-LISTENS AND CLOSES PRINTER

10 OPEN 1, 1, 1, "TEST": REM CREATESEQ FilE
20 CMD 1: REM OUTPUT TO TAPE FilE, NOT SCREEN
30 FOR l = 1 TO 100
40 PRINT l: REM PUTS NUMBER IN TAPE BUFFER
50 NEXT
60 PRINT# 1: REM UNLISTEN

70 CLOSE 1: REM WRITE UNFINISHED BUFFER, PROPERLYFINISH

CONT

TYPE: Command
FORMAT:CONT

Action: This command re-starts the execution of a program which was
halted by a STOP or END statement or the .:~lllr~"tI'I:Ikey being
pressed. The program will re-start at the exact place from which it left
off.

While the program is stopped, the user can inspect or change any
variables or look at the program. When de-bugging or examining a
program, STOP statements can be placed at strategic locations to allow
examination of variables and to check the flow of the program.

The error message CAN'T CONTINUE will result from editing the
program (even just hitting .:~:lIII:U. with the cursor on an unchanged
line), or if the program halted due to an error, or if you caused an error
before typing CONT to re-start the program.

EXAMPLEof CONT Command:

10 PI=O:C=l

20 PI=PI+4/C-4/(C+2)
30 PRINT PI
40 C=C+4:GOTO 20

BASIC LANGUAGE VOCABULARY 41

This program calculates the value of PI. RUN this program, and after
a short while hit the Imhrl:tlll:l key. You will see the display:

BREAKIN 20 I NOTE: Might be different number. I

Type the command PRINT C to see how far the Commodore 64 has
gotten. Then use CONT to resume from where the Commodore 64 left
off.

cos
TYPE: Function
FORMAT:COS (<number>)

Action: This mathematical function calculates the cosine of the

number, where the number is an angle in radians.

EXAMPLESof cas Function:

10 PRINTCOS (0)
20 X = COS (Y * 7T/ 180) : REM CONVERT DEGREES TO RADIANS

DATA

TYPE: Statement
FORMAT: DATA <list of constants>

Action: DATA statements store information within a program. The
program uses the information by means of the READ statement, which
pulls successive constants from the DATAstatements.

The DATAstatements don't have to be executed by the program, they
only have to be present. Therefore, they are usually placed at the end of
the program.

All data statements in a program are treated as a continuous list.

Data is READfrom left to right, from the lowest numbered line to the
highest. If the READstatement encounters data that doesn't fit the type
requested (if it needs a number and finds a string) an error message
occurs.

42 BASIC LANGUAGE VOCABULARY

Any characters can be included as data, but if certain ones are used

the data item must be enclosed by quote marks (" "). These include
punctuat.ion like comma (,), colon (:), blank spaces, and shifted letters,
graphics, and cursor control characters.

EXAMPLESof DATA Statement:

10 DATA 1, 10, 5, 8
20 DATAJOHN, PAUL, GEORGE, RINGO
30 DATA"DEAR MARY, HOW ARE YOU, lOVE, Bill"
40 DATA -1.7E-9, 3.33

DEF FN

TYPE: Statement

FORMAT: DEF FN <name> (<variable>) = <expres-
sion>

Action: This sets up a user-defined function that can be used later in
the program. The function can consist of any mathematical formula.
Usec-defined functions save space in programs where a long formula is
used in several places. The formula need only be specified once, in the
definition statement, and then it is abbreviated as a function name. It

must be executed once, but any subsequent executions are ignored.
The function name is the letters FN followed by any variable name.

This can be 1 or 2 characters, the first being a letter and the second a
letter or digit.

EXAMPLESof DEF FN Statement:

10 DEFFN A (X) = X + 7
20 DEF FN AA (X) = Y * Z
30 DEF FNA9 (Q) = INT(RND(1)* Q+ 1)

The function is called later in the program by using the function name
with a variable in parentheses. This function name is used like any other
variable, and its value is automatically calculated.

BASIC LANGUAGE VOCABULARY 43

EXAMPLES of FN Use:

40 PRINT FN A (9)
50 R = FNAA (9)
60 G = G + FN A9 (10)

In line 50 above, the number 9 inside the parentheses does not affect
the outcome of the function, because the function definition in line 20
doesn't use the variable in the parentheses. The result is Y times Z,
regardless of the value of X. In the other two functions, the value in
parentheses does affect the result.

DIM

TYPE: Statement
FORMAT:DIM <variable> (<subscripts>) [

<variable> (<subscripts>) . . .]

Action: This statement defines an array or matrix of variables. This
allows you to use the variable name with a subscript. The subscript
points to the element being used. The lowest element number in an
array is zero, and the highest is the number given in the DIM statement,
which has a maximum of 32767.

The DIM statement must be executed once and only once for each
array. A REDIM'DARRAY error occurs if this line is re-executed. There-
fore, most programs perform all DIM operations at the very beginning.

There may be any number of dimensions and 255 subscripts in an
array, limited only by the amount of RAM memory which is available to
hold the variables. The array may be made up of normal numeric vari-
ables, as shown above, or of strings or integer numbers. If the variables
are other than normal numeric, use the $ or % signs after the variable.
name to indicate string or integer variables,

44 BASIC LANGUAGE VOCABULARY

If an array referenced in a program was never DIMensioned, it is
automatically dimensioned to 11 elements in each dimension used in the
first re.ference.

EXAMPLESof DIM Statement:

10 DIM A (100)
20 DIMZ (5, 7), Y (3, 4, 5)
30 DIM Y7% (Q)
40 DIM PH$ (1000)
50 F (4) =9: REM AUTOMATICAtLYPERFORMSDIM F (10)

EXAMPLEof FOOTBALLSCORE-KEEPING Using DIM:

10 DIM 5(1,5), T$(1)
20 INPUT "TEAM NAMES"; T$(O), T$(l)
.30 FOR Q=l TO 5: FOR T=O TO 1

40 PRINT T$(T), "SCORE IN QUARTER" Q
50 INPUT S(T,Q): S(T;O)= S(T,O)+ S(T,Q)
60 NEXTT,Q
70 PRINT CHR$(147) "SCOREBOARD"
80 PRINT "QUARTER"
90 FOR Q=l TO 5

100 PRINT TAB(Q*2 +9) Q;
110 NEXT: PRINT TAB(15) "TOTAL"
1.20 FOR T=O TO 1: PRINTT$(T);
130 -FORQ= 1 TO 5
140 PRINT TAB(Q*2 +9) S(T,Q);
150 NEXT: PRINT TAB(15) S(T,O)
160 NEXT

CALCULATINGMEMORY USED BY DIM:

5 bytes for the array name
2 bytes for each dimension
2 bytes/element for integer variables
5 bytes/element for normal numeric variables
3 bytes/element for string -variables
1 byte for each character in each string element

BASIC LANGUAGE VOCABULARY 45

END

TYPE: Statement
FORMAT: END

Action: This finishes a program's execution and displays the READY
message, returning control to the person operating the computer. There
may be any number of END statements within a program. While it is not
necessary to include any END statements at all, it is recommended that
a program does conclude with one, rather than just running out of lines.

The END statement is similar to the STOP statement. The only differ-
ence is that STOP causes the computer to display the message BREAK
IN LINE XX and END just displays READY. Both statements allow the
computer to resume execution by typing the CONT command.

EXAMPLESof END Statement:

10 PRINT "DO YOU REAllY WANT TO RUN THIS PROGRAM"
20 INPUT A$
30 IF A$ = "NO" THEN END
40 REM RESTOF PROGRAM .
999 END

EXP

TYPE: Function-Numeric
FORMAT: EXP (<number>)

Action: This mathematical function calculates the constant e

(2.71828183) raised to the power of the number given. A value greater
than 88.0296919 causes an ?OVERFlOW error to occur.

EXAMPLESof EXP Function:

10 PRINT EXP (1)

20. X = Y * EXP (Z * Q)

46 BASIC LANGUAGE VOCABULARY

FN

TYPE: Function-Numeric
FORMAT:FN <name> (<number>)

Action: This function references the previously DEFined formula spec-
jfied by name. The number is substituted into its place (if any) and the
formula is calculated. The result will be a numeric value.

This function can be used in direct mode, as long as the statement
DEFining it has been executed.

If an FN is executed before the DEF statement which defines it, an
UNDEF'D FUNCTION error occurs.

EXAMPLESof FN (User.;Defined) Function:

PRINT FN A (Q)
1100 J = FN J (7) + FN J (9)
9990 IF FN 87 (1+1)= 6 THEN END

FOR . . . TO . . . [STEP.. .]
TYPE: Statement
FORMAT:FOR <variable>

<increment>]
<start> TO <limit> [STEP

. Action: This is a special BASICstatement that lets you easily use a
variable as a counter. You must specify certain parameters: the
floating-point variable name, its starting value, the limit of the count,
and how much to add during each cycle.

Here is a simple BASIC program that counts from 1 to 10, PRINTing
each number and ENDing when complete, and using no FOR state-
ments:

100 L = 1
110 PRINT L
120 L = L + 1
130 IF l <= 10 THEN 110
140 END

BASIC LANGUAGE VOCABULARY 47

Using the FOR statement, here is the same program:

100 FOR l = 1 TO 10
110 PRINT L
120 NEXT L
130 END

As you can see, the program is shorter' and easier to understand using
the FOR statement.

When the. FOR statement is executed, several operations take place.
The <start> value is placed in the <variable> being used in the
counter. In the example above, a 1 is placed in l.

When the NEXT statement is reached, the <increment> value is
added to the <variable>. If a STEPwas not included, the <increment>
is set to + 1. The first time the program above hits line 120, 1 is added
to l, so the new value of l is 2.

Now the value in the <variable> is compared to the <limit>. If the
<limit> has not been reached yet, the program GOes TO the line after
the original FOR statement. In this case; the value of 2 in l is less than
the limit of 10, so it GOes TO line 110.

Eventually, the value of <limit> is exceeded by the <variable>. At
that time, the loop is concluded and the program continues with the line
following the. NEXT statement. In our example, the value of l reaches
11, which. exceeds the limit of 10, and the program goes on with line
130.

When the value of <increment> is positive, the <variable> must
exceed the <limit>, and when it is negative it must become less than
the <limit>.

NOTE: A loop always executes at least once.

EXAMPLESof FOR. . .TO. . .STEP.. .Statement:

100 FORL = 100 TO 0 STEP-1
100 FORL = PI TO 6*1TSTEP.01
100 FOR AA = 3 TO 3

48 BASIC LANGUAGE VOCABULARY

FRE

TYPE: Function
FORMAT:FRE (<variable>)

Action: This function tells you how much RAM is available for your
program and its variables. If a program tries to use more space than is
available, the OUT OF MEMORY error results.

The number in parentheses can have any value, and it is not used in
the calculation.

NOTE: If the result of FRE is negative, add 65536 to the FRE number to get the

number of bytes available in memory.

EXAMPLESof FRE Function:

PRINT FRE (0)
10 X = (FRE (K) - 1000) / 7
950 IF FRE (0) < 100 THEN PRINT "NOT ENOUGH ROOM"

NOTE: The following always tells you the current available RAM:

PRINT FRE(O)- (FRE(O)< 0)* 65536

GET

TYPE: Statement
FORMAT: GET <variable list>

Action: This statement reads each key typed by the user. As the user
is typing, the characters are stored in the Commodore 64's keyboard
buffer. Up to 10 characters are stored here, and any keys struck after
the 10th are lost. Reading one of the characters with the GETstatement
makes room for another character.

If the GET statement specifies numeric data, and the user types a key
other than a number, the message ?SYNTAX ERRORappears. To be
safe, read the keys as strings and convert them to numbers later.

BASICLANGUAGEVOCABULARY 49

The GET statement can be used to avoid some of the limitations of the

INPUT statement. For more on this, see the section on Using the GET
Statement in the Programming Techniques section.

EXAMPLESof GET Statement:

10 GET A$: IF A$ = 1111THEN 10: REM LOOPS IN 10 UNTILANY KEY
HIT

20 GET A$, 8$, C$, D$, E$: REM READS5 KEYS
30 GET A, A$

GET#

TYPE: I/O Statement
FORMAT:GET# <file number>, <variable list>

Action: This statement reads characters one-at-a-time from the device

or file specified. It works the same as the GET statement, except that the
data comes from a different place than the keyboard. If no character is
received, the variable is set to an empty string (equal to "") or to 0 for
numeric variables. Characters used to separate data in files, like the
comma (,) or .~~:lIII~U. key code (ASC code of 13), are received like
any other character.

When used with device #3 (TV screen), this statement will read char-
acters one by one from the screen. Each use of GET# moves the cursor 1
position to the right. The character at the end of the logical line is
changed to a CHR$ (13), the .~~:lIII~~I. key code.

EXAMPLESof GET# Statement:

5 GET# 1, A$
10 OPEN 1, 3: GET# 1, Z7$
20 GET# 1, A, 8, C$, D$

50 BASIC LANGUAGE VOCABULARY

GOSUB

TYPE: Statement
FORMAT: GOSUB <line number>

Action: This is a specialized form of the GOTO statement, with one
important difference: GOSUB remembers where it came from. When the
RETURNstatement (different from the .~I:IIIII!U. key on the keyboard)
is reached in the program, the program jumps back to the statement
immediately following the original GOSUB statement.

The major use of a subroutine (GOSUB really means GO to a SUB-
routine) is when a small section of program is used by different sections
of the program. By using subroutines rather than repeating the same
lines over and over at different places in the program, you can save lots
of program space. In this way, GOSUB is similar to DEFFN. DEF FN lets
you save space when using a formula, while GOSUB saves space when
using a several-line routine. Here is an inefficient program that doesn't
use GOSUB:

100 PRINT "THIS PROGRAM PRINTS"

110 FOR L = 1 TO 500 : NEXT

120 PRINT "SLOWLYON THE SCREEN"
130 FOR L = 1 TO 500 : NEXT
140 PRINT "USING A SIMPLELOOP"
150 FOR L = 1 TO 500 : NEXT
160 PRINT "AS A TIME DELAY:'
170 FOR L = 1 TO 500 : NEXT

Here is the same program using GOSUB:

100 PRINT "THIS PROGRAM PRINTS"
110 GOSUB 200
120 PRINT "SLOWLYON THE SCREEN"
130 GOSUB 200
140 PRINT "USING A SIMPLELOOP"
150 GOSUB 200
160 PRINT "AS A TIME DELAY."
170 GOSUB 200
180 END
200 FOR L = 1 TO 500 : NEXT

210 RETURN

BASIC LANGUAGE VOCABULARY 51

Each time the program .executes a GOSUB,the line number and posi-
tion in the program line ~re saved in a special area called the "stack,"
which takes up 256 bytes of your memory. This limits the amount of data
that can be stored in the stack. Therefore, the number of subroutine
return addresses that can be stored is limited, and care should be taken
to make sure every GOSUB hits the corresponding RETURN,or else you'll
run out of memory even though you have plenty of bytes free.

GOTO

TYPE:Statement
FORMAT:GOTO <line number>

or GO TO <line number>

Action: This statement allows the BASIC program to execute lines out
of numerical order. The word GOTO followed by a number will make
the program jump to the line with that number. GOTO NOT followed by
a number equals GOTO O. It must have the line number after the word
GOTO.

It is possible to create loops with GOTO that will never end. The
simplest example of this is a line that GOes TO itself, like 10 GOTO 10.
These loops can be stopped using the .:~lI/r~...tI'l:.JIkey on the key-
board.

EXAMPLESof GOTO Statement:

GOTO 100
10 GO TO 50
20 GOTO 999

IF . . . THEN

TYPE: Statement
FORMAT: IF <expression> THEN <line number>

IF <expression> GOTO <line number>
IF <expression> THEN <statements>

Action: This is the statement that gives BASIC most of its "intelli-
gence," the ability to evaluate conditions and take different actions de-
pending on the outcome.

52 BASIC LANGUAGE VOCABULARY

The word IF is followed by an expression, which can include varia-

bles, strings, numbers, comparisons, and 199ical operators. The word
THEN appears on the same line and is followed by either a line number
.or one or more BASIC statements. When the expression is false, every-
thing after the word THEN on that line is ignored, and execution' con-
tinues with the next line number in the program. A true result makes the
program either branch to the line number after the word THEN or exe-
cute whatever other BASIC statements are found on that line.

EXAMPLEof IF. . .GOTO. . .Statement:

100 INPUT "TYPE A NUMBER"; N
110 IF N <= 0 GOTO :200

120 PRINT "SQUARE ROOT=" SQR(N}
130 GOTO 100
200 PRINT "NUMBER MUST BE >0"
210 GOTO 100

This program prints out the square root of any positive number. The IF
statement here is used to validate the result of the INPUT. When the
result of N <= 0 is true, the program skips to line .200, and when the
result is false the next line to be executed is 120. Note that THEN GOTO

is not needed with IF. . .THEN, as in line 110 where GOT0200 actually
means THEN GOTO 200.

EXAMPLEOF IF. . . THEN. . . Statement:

100 FOR l = 1 TO 100

110 IF RND(1}< .5 THENX = X+ 1 : GOTO 130
120 Y = V+ 1
130 NEXT l
140 PRINT "HEADS= " X
150 PRINT "TAllS= " Y

The IF in line 110 tests a random number to see if it is less than .5.

When the result is true, the whole series of statements following the
word THEN are executed: first X is incremented by 1, then the program
skips to line 130. When the result is false, the program drops to the next
statement, line 120.

BASIC LANGUAGE VOCABULARY 53

INPUT

TYPE: Statement
FORMAT:INPUT [l/<prompt>1/ ;] <variable list>

Action: This is a statement that lets the person RUNning the program
"feed" information into the computer. When executed, this statement
PRINTs a question mark (?) on the screen, and positions the cursor 1
space to the right of the question mark. Now the computer waits, cursor
blinking, for the operator to type in the answer and press the _:1:1111:11_
key.

The word INPUT may be followed by any text contained in quote
marks (" "). This text is PRINTed on the screen, followed by the ques-
tion mark.

After the text comes a semicolon (j) and the name of one or more

variables separated by commas. This variable is where the computer
stores the information that the operator types. The variable can be any
legal variable name, and you can have several different variable
names, each for a different input.

EXAMPLESof INPUT Statement:

100 INPUT A

110 INPUT B, C, D
120 INPUT "PROMPT"j E

When this program RUNs,the question mark appears to prompt the
operator that the Commodore 64 is expecting an input for line 100. Any
number typed in goes into A, for later use in the program. If the answer
typed was not a number, the ?REDO FROM STARTmessage appears,
which means that a string was received when a number was expected.
If the operator just hits _:1:1111:11_without typing anything, the vari-
able's value doesn't change.

Now the next question mark, for line 110, appears. If we type only
one number and hit 11:1:llmll_ , the Commodore 64 will now display 2
question marks (??), which means that more input is required. You can

54 BASICLANGUAGEVOCABULARY

just type as many inputs as you need separated by commas, which
prevents the double question mark from appearing. If you type more
data than the INPUT statement requested, the ?EXTRA IGNORED mes-
sage appears, which means that the extra items you typed were not put
into any variables.

Line 120 displays the
pears. The semicolon is
variables.

The INPUT statement can never be used outside a program. The
Commodore 64 needs space for a buffer for the INPUT variables, the
same space that is used for commands.

word PROMPT before the question mark ap-
required between the prompt and any list of

INPUT#

TYPE: I/O Statement
FORMAT:INPUT# <file number> , <variable list>

Action: This is usually the fastest and easiest way to retrieve data
stored in a file on disk or tape. The data is in the form of whole vari-
ables of up to. 80 characters in length, as opposed to the one-at-a-time
method of GET#. First, the file must have been OPENed, then INPUT#
can fill the variables.

The INPUT# command assumes a variable is finished when it reads a

RETURN code (CHR$ (13», a comma (,), semicolon (i), or colon (:).
Quote marks can be used to enclose these characters when writing if

they are needed (see PRINT# statement).
If the variable type used is numeric, and non-numeric characters are

received, a BAD DATA error results. INPUT# can read strings up to 80
characters long, beyond which a STRING TOO LONG error results.

When used with device #3 (the screen), this statement will read an

entire logical line and move the cursor down to the next line.

EXAMPLESof INPUT# Statement:

10 INPUT# 1, A
20 INPUT# 2, A$, B$

BASICLANGUAGEVOCABULARY 55

INT

TYPE: Integer Function
FORMAT:INT «numeric»

Action: Returns the integer value of the expression. If the expression
is positive, the fractional part is left off. If the expression is negative,
any fraction causes the next lower integer to be returned.

EXAMPLESof INT Function:

120 PRINT INT(99.4343), INT(-12.34)

99 -13

LEFT$

TYPE: String Function
FORMAT:LEFT$(<string>, <integer»

Action: Returns a string comprised of the leftmost <integer> char-
acters of the <string>. The integer argument value must be in the
range 0 to 255. If the integer is greater than .the length of the string, the
entire string will be returned. If an <integer> value of zero is used,
then a null string (of zero length) is returned.

EXAMPLESof LEFT$Function:

10 A$ = "COMMODORE COMPUTERS"
20 B$ = LEFT$(A$,9): PRINTB$
RUN

COMMODORE

56 BASICLANGUAGEVOCABULARY

LEN

TYPE: Integer Function
Format: LEN «string»

Action: Returns the number of characters in the string expression.
Non-printed characters and blanks are counted.

EXAMPLEof LEN Fundion:

CC$ = "COMMODORECOMPUTER":PRINTLEN(CC$)

18

LET

TYPE: Statement
FORMAT:[LET] <variable> = <expression>

Action: The LETstatement can be used to assign a value to a vari-
able. But the word LETis optional and therefore most advanced pro-
grammers leave LETout because it's always understood and wastes val-
uable memory. The equal sign (=) alone is sufficient when assigning the
value of an expression to a variable name.

EXAMPLESof LETStatement:

10 LETD= 12
20 LETE$ = "ABC"
30 F$ = "WORDS"
40 SUM$ = E$ + F$

(This is the same as D = 12)

(SUM$ would equal ABCWORDS)

BASIC LANGUAGE VOCABULARY 57

LIST

TYPE: Command
FORMAT:LIST[[<first-line>]-[<last-line>]]

Action: The LIST command allows you to look at lines of the BASIC

program currently in the memory of your Commodore 64. This lets you

use your computer's powerful screen editor to edit programs which
you've LISTed both quickly and easily.

The LIST system command displays all or part of the program that is

currently in memory on the default output device. The LIST will normally
be directed to the screen and the CMD statement can be used to switch

output to an external device such as a printer or a disk. The LIST com-

mand can appear in a program, but BASIC always returns to the system
READY message after a LIST is executed.

When you bring the program LIST onto the screen, the "scrolling" of

the display from the bottom of the screen to the top can be slowed by

holding down the ConTRol Bill key. LIST is aborted by typing

the ~~ml,.."tIll:.JIkey.
If no line-numbers are given the entire program is listed. If only the

first-line number is specified, and followed by a hyphen (-), that line and

all higher-numbered lines are listed. If only the last line-number is spec-

ified, and it is preceded by a hyphen, then all lines from the beginning
of the program through that line are listed. If both numbers are spec-
ified, the entire range, including the line-numbers LISTed, is displayed.

EXAMPLESof LISTCommand:

LIST (lists the program currently in memory.)

LIST 500 (lists line 500 only.)

LIST 150- (lists all lines from 150 to the end.)

LIST -1000 (lists all lines from the lowest through 1000.)

LIST 150-1000 (lists lines 150 through 1000, inclusive.)

10 PRINT "THIS IS LINE 10"

20 LIST (LISTused in Program Mode)
30 PRINT"THIS IS LINE 30"

58 BASIC LANGUAGE VOCABULARY

LOAD

TYPE: Command
FORMAT: LOAD ["<file-name>"] [,<device>]

[,<address>]

Action:The LOAD statement reads the contents of a program file from
tape or disk into memory. That way you can use the information LOADed

or change the information in some way. The device number is optional,

but when it is left out the computer will automatically default to 1, the
cassette unit. The disk unit is normally device number 8. The LOAD
closes all open flies and, if it is used in direct mode, it performs a CLR
(clear) before reading the program. If LOAD is executed from within a

program, the program is RUN. This means that you can use LOAD to
"chain" several programs together. None of the variables are cleared
during a chain operation.

If you are using file-name pattern matching, the first file which

matches the pattern is loaded. The asterisk in quotes by itself ("*")
causes the first file-name in the disk directory to be loaded. if the file-

name used does not exist or if it is not a program file, the BASIC error
message ?FILE NOT FOUND occurs.

When LOADing programs from tape, the <file-name> can be left

out, and the next program file on the tape will be read. The Commodore

64 will blank the screen to the border color after the PLAY key is
pressed. When the program is found, the screen clears to the back-

ground color and the "FOUND" message is displayed. When the [I
key, .. key, II key, or 1-'1:1,'11.:,,1:1 is pressed, the file will
be loaded. Programs will LOAD starting at memory location 2048 unless
a secondary <address> of 1 is used. If you use the secondary address
of 1 this will cause the program to LOAD to the memory location from
which it was saved.

BASIC LANGUAGE VOCABULARY 59

EXAMPLESof LOAD Command:

LOAD

LOAD A$

LOAD "*",8

LOAD "",1,1

LOAD "STAR TREK"

PRESS PLAY ON TAPE

FOUND STAR TREK

LOADING

READY.

LOAD "FUN",8
SEARCHING FOR FUN
LOADING
READY.

LOAD "GAME ONE",S,1
SEARCHING FOR GAME ONE
LOADING
READY.

60 BASIC LANGUAGE VOCABULARY

(Reads the next program on tape)

(Uses the name in A$ to search)

(LOADs first program from disk)

(Looks for the first program on
tape, and LOADs it into the same
part of memory that it came
from)

(LOAD a file from tape)

(LOAD a file from disk)

(LOAD a file to the specific
memory location from which the
program was saved on the disk)

LOG

TYPE: Floating-Point Function
FORMAT:LOG «numeric»

Action: Returns the natural logarithm (log to the base of e) of the
argument. If the value of the argument is zero or negative the BASIC
err.or message ?ILLEGALQUANTITY will-occur.

EXAMPtES of. LOG Function~

25 PRINT LOG(45/7}
1.86075234

10 NUM = LOG(ARG) / LOG(10) (Calculates the LOG of ARG to the
base 10)

MID$

TYPE: String Function
FORMAT: MID$ «string>, <numeric-1> [, <numeric-

2>])

Action: The MID$ function returns a sub-string which is taken from

within a larger <string> argument. The starting position of the sub-
string is defined by the <numeric-1> argument and the length of the
sub-string by the <numeric-2> argument. Both of the numeric arg\!-
ments can have values ranging from 0 to 255.

If the <numeric-1> value is greater than the length of the <string>,
or if the <numeric-2> value is zero, then MID$ gives a null string value.
If the <numeric-2> argument is left out, then the computer will assume
that a length of the rest of the string is to be used. And if t~e source
string has fewer characters than <numeric-2>, from the starting posi-
tion to the end of the string argument, then the whole rest of the string is
used.

EXAMPLE'of MID$ Function:

10 A$="GOOD"

20 B$="MORNING EVENING AFTERNOON"
30 PRINT A$ + MID$(B$, 8, 8)

GOOD EVENING

BASIC LANGUAGE VOCABULARY 61

.NEW

TYPE: Command
FORMAT:NEW

Action: The NEW command is used to delete the program currently in
memory and clear aU variables. Before typing in a new program, NEW
should be used in direct mode to clear memory. NEW can also be used
in a program, but you should be aware of the fact that it will erase
everything that has gone before and is still in the computer's memory.
This can be particularly troublesome when you're trying to debug your
program.

BE CAREFUL: Not clearing out an old program before typing a new one can result in
a. confusing mix of the two programs.

EXAMPLESof NEW Command:

NEW
10 NEW

(Clears the program and all variables)
(Performs a NEW operation and STOPs the program.)

NEXT

TYPE: Statement
FORMAT:NEXT [<counter>] [,<counter>]

Action: The NEXTstatement is used with FOR to establish the end of a

FOR. . . NEXTloop. The NEXTneed not be physically the last statement
in the loop, but it is always the last statement executed in a loop. The
<counter> is the loop index's variable name used with FOR to start the
loop. A single NEXTcan stop several nested loops when it is followed by
each FOR's <counter> variable name(s). To do this each name must
appear in the order of inner-most nested loop first, to outer-most nested
loop last. When using a single NEXTto increment and stop several vari-
able names, each variable name must be separated by commas. Loops
can be nested to 9 levels. If the counter variable(s) are omitted, the
counter associated with the FOR of the current level (of the nested loops)
is incremented.

62 BASICLANGUAGEVOCABULARY

When the NEXTis reached, the counter value is incremented by 1 or
. by an optional STEPvalue. It is then tested against an end-value to see
if it's time to stop the loop. A loop will be stopped when a NEXTis found
which has its counter value greater than the end-value.

EXAMPLESof NEXT Statement:

10 FOR J = 1 TO 5: FOR K = 10 TO 20: FOR. N = 5 TO - 5 STEP -1

20 NEXT N, K, J (Stopping Nested Loops)

10 FOR L = 1.TO 100
20 FORM = 1 TO 10
30 NEXTM
400 NEXT L (Note how the loops do NOT cross each

other)

10 FOR A = 1 TO 10
20 FOR 8 = 1 TO 20
30 NEXT
40 NEXT (Notice that no variable names are

need.ed)

NOT

TYPE: Logical Operator
FORMAT:NOT <expression>

Action: The NOT logical operator "complements" the value of each bit
in its single operand, producing an. integer "twos-complement" result. In
other words, the NOT is really saying, "if it isn't. . . ". When working
with a floating-point number, the operands are converted to integers
and any fractions are lost. The NOT operator can also be used in a
comparison to reverse the true/false value which was the result of a
relationship test and therefore it will reverse the meaning of the com-
parison. In the first example below, if the "twos-complement" of "AA" is
equal to "8B" and if "BB" is NOT equal to "Ce' then the expression is
true.

BASIC LANGUAGE VOCABULARY 63

EXAMPLESof NOT Operator:

10 IF NOT AA = BB AND N.oT(BB = CC} THEN

NN% = NOT 96: PRINT NN%
-97

NOTE: -To find the value of-NOT-use-the expression X=(-(X+I». (The.two's comple-

ment of any integer is the bit complement plus one.)

ON

TYPE: Statement
FORMAT: ON <variable> GOTO / GOSUB <Iine-

number> [,<line-number>]

Action: The ON statement is used to GOTO one of several given line-
numbers, depending upon the value of a variable. The value of the
variables can range from zero through the number of lines given. If the
value is a non-integer, the fractional portion is left off. For example, if
the variable value is 3, ON will GOTO the third line-number in the list.

If the value of the variable is negative, the BASIC error message
?ILLEGALQUANTITY occurs. If the number is zero, or greater than the
number of items in the list, the program just "ignores" the statement and
continues with the statement following the ON statement.

ON is really an underused variant of the IF. . .THEN. . . statement.
Instead of using a whole lot of IF statements each of which sends the
program to 1 specific line, ION- statement can replace a list of IF
statements. When you look at the first example you should notice that
the 1 ON statement replaces 4 IF. . .THEN. . . statements.

EXAMPLESof ON Statement:

ON -(A=7)-2"'(A=3)- 3*(A<3)-o4*(A>7)G.oTO 400,900,1000,100

ON X GOTO 100,130,180,220

ON X+3 GOSUB 9000,20,9000

100 ON NUM GOTO 150, 300, 320, 390

500 .oN SUM / 2 + 1 GOSUB 50, 80, 20

64 BASICLANGUAGEVOCABULARY

OPEN

TYPE:I/O Statement
FORMAT:OPEN <file-num>, [<device>] [,<address>]

[,"<file-name> [,<type>] [,<mode>]"]

Action: This statement OPENs a channel for input and/or output to a
peripheral device. However, you may NOT need all those ports for
every OPEN statement. Some OPEN statements require only 2 codes:

1) LOGICAL FILE NUMBER

2) DEVICE NUMBER

The <file-num> is the logical file number, which relates the OPEN,
CLOSE, CMD, GET#, INPUT#, and PRINT# statements to each other

and associates them with the file-name and the piece of equipment
being used. The logical file number can range from 1 to 255 and you
can assign it any number you want in that range.

NOTE: File numbers over 128 were really designed for other uses so it's good practice

to use only numbers below 127 for file numbers.

Each peripheral device (printer, disk drive, cassette) in the system has
its own number which it answers to. The <device> number is used with

OPEN to specify on which device the data file exists. Peripherals like
cassette decks, disk drives or printers also answer to several secondary
addresses. Think of these as codes which tell each device what opera-
tion to perform. The device logical file number is used with every GET#,
INPUT#, and PRINT#.

If the <device> number is left out the computer will automatically
assume that you want your information to be sent to and received from
the Datassette no, which is device number 1. The file-nome can also be

left out, but later on in your program, you can NOT call the file by name
if you have not already given it one. When you are storing files on cas-
sette tape, the computer will assume that the secondary <address> is
zero (0) if you omit the secondary address (a READoperation).

BASICLANGUAGEVOCABULARY 65

A secondary address value of one (1) OPENs cassette tape files for
writing. A secondary address value of two (2) causes an end-of-tape
marker to be written when the file is later closed. The end-of-tape
marker prevents accidentally reading past the end of data which results
in the BASIC error message ?DEVICENOT PRESENT.

For disk files, the secondary addresses 2 thru 14 are available for
data-files, but other numbers have special meanings in DOS commands.
You must use a secondary address when using your disk drive(s). (See
your disk drive manual for DOS command details.)

The <file-name> is a string of 1- 16 characters and is optional for
cassette or printer files. If the file <type> is left out the type of file will
automatically default to the Program file unless the <mode> is given.
Sequential files are OPENed for reading <mode>=R unless you specify
that files should be OPENed for writing <mode>=W is specified. A file
<type> can be used to OPEN an existing Relative file. Use RELfor
<type> with Relative files. Relative and Sequential files are for disk
only.

If you try to access a file before it is OPENed the BASIC error message
?FILENOT OPEN will occur. If you try to OPEN a file for reading which
does not exist the BASIC error message ?FILENOTFOUNDwilloccur. If
a file is OPENed to disk for writing and the file-name already exists, the
DOS error message FILEEXISTSoccurs. There is no check of this type
available for tape files, so be sure that the tape is properly positioned or
you might accidentally write over some data that had previously been
SAVEd. If a file is OPENed that is already OPEN, the BASIC error mes-
sage FILEOPEN occurs. (See Printer Manual for further details.)

66 BASIC LANGUAGE VOCABULARY

EXAMPLESof OPEN Statements:

10 OPEN 2, a, 4 "DISK-OUTPUT,
SEQ,W"

10 OPEN 1, 1, 2, "TAPE-WRITE"

10 OPEN 50, °

10 OPEN 12, 3

10 OPEN 130, 4

10 OPEN 1,1,0, "NAME"

10 OPEN 1,1,1, "NAME"

10 OPEN 1,2,0, CHR$ (10)

10 OPEN 1,4,0, "STRING"

10 OPEN 1,4,7, "STRING"

10 OPEN 1,5,7, "STRING"

10 OPEN 1,a, 15, "COMMAND"

(Opens sequential file on disk)

(Write End-of-File on Close)

(Keyboard input)

(Screen output)

(Printer output)

(Read from cassette)

(Write to cassette)

(Open channel to RS-232 device)

(Send upper case/graphics to

the printer)

(Send upper/lower case to

printer)

(Send upper/lower case to

printer with device # 5)
(Send a command to disk)

BASIC LANGUAGE VOCABULARY 67

OR

TYPE: Logical Operator
FORMAT: <operand> OR <operand>

Adion: Just as the relational operators can be used to make decisions
egarding program flow, logical operators can connect two or more re-

.ations and return a true or false value which can then be used in a

decision. When used in calculations, the logical OR gives you a bit result
of 1 if the corre~ponding bit of either or both operands is 1. This will
produce an integer as a result depending on the values of the operands.
When used in comparisons the logical OR operator is also used to link
two expressions into a single compound expression. If either of the ex-
pressions are true, the combined expression value is true (-1). In the
first example below if AA is equal to BB OR if XX is 20, the expression is
true.

Logical operators work by converting their operands to 16-bit, signed,
two's complement integers in the range of -32768 to +32767. If the
operands are not in the range an error message results. Each bit of the
result is determined by the corresponding bits in the two operands.

EXAMPLES of OR Operator:

100 IF (AA = BB) OR (XX = 20)THEN.. . .

230 KK% = 64 OR 32: PRINT KK% (You typed this with a bit
value of 1000000 for 64

and 100000 for 32)

96 (The computer responded
with bit value 1100000.

1100000=96.)

68 BASIC LANGUAGE VOCABULARY

I

PEEK

TYPE: Integer Function
FORMAT: PEEK«numeric»

Action: Returns an integer in the range of 0 to 255, which is read
from a memory location. The <numeric> expression is a memory loca-
tion which must be in the range of 0 to 65535. If it isn't then the BASIC
error message ?ILLEGALQUANTITY occurs.

EXAMPLESof PEEK Function:

10 PRINT PEEK(53280) AND 15 (Returns value of screen
border color)
(Returns address of BASIC
variable table)

5 A% =PEEK(45)+PEEK(46)*256

POKE

TYPE:Statement-
FORMAT:POKE<location>, <value>

Action: The POKE statement is used to write a one-byte (8-bits) binary
value into a given memory location or input/output register. The
<location> is an arithmetic expression which must equal a value in the
range of 0 to 65535. The <value> is an expression which can be re-

duced to an integer value of 0 to 255. If either value is out of its respec-
tive range, the BASIC error message ?ILLEGALQUANTITY occurs.

The POKE statement and PEEKstatement (which is a built-in function

that looks at a memory location) are useful for data storage, controlling
graphics displays or sound generation, loading assembly language sub-
routines, and passing arguments and results to and from assembly lan-
guage subroutines. In addition, Operating System parameters can be
examined using PEEKstatements or changed and manipulated using
POKE statements. A complete memory map of useful locations is given
in Appendix G.

BASIC LANGUAGE VOCABULARY 69

EXAMPLESof POKE Statement:

POKE 1024, 1
POKE 2040, PTR
10 POKE RED, 32
20 POKE 36879, 8
2050 POKE A, B

(Puts' an UAU at position 1 on the screen)

(Updates Sprite' #0 data pointer)

POS

TYPE: Integer Function
FORMAT:POS «dummy»

Adion: Tells you the current cursor position which, of course, is in the
range of 0 (leftmost character) though position 79 on an80-character
logical screen line. Since the Commodore 64 has a 40-column screen,
any position from 40 through 79 will refer to the second screen line. The
dummy argument is ignored.

EXAMPLEof POS Fundion:

1000 IF POS(O) > 38,'THEN PRINT'CHR$(13)

PRINT

TYPE: Statement
FORMAT: PRINT [<variable>] [<,/;><variable>]

Adion: The PRINT statement is normally used to write data items to
the screen. However, the CMD,statement may be used to re-direct,that
output to any 'other device in the system. The <variable(s» in the
output-list are expressions of any type. If no output-list is present, a
blank line is printed. The position of each printed item is determined by
the punctuation used to separate items in the output-list.

The punctuation characters that you can use are blanks, commas, or
semicolons. The SO-character logical screen line is divided into 8 print

zones of 10 spaces each. In the list of expressions, a comma causes the
next value to be printed at the ,beginning of the next zone. A semicolon
causes the next value to be printed immediately following the previous
value. However, there are two exceptions to this rule:

70 BASIC LANGUAGE VOCABULARY

1) Numeric items are followed by an added space.
2) Positive numbers have a space preceding them.
When you use blanks or no punctuation between string constants or

variable names it has the same effect as a semicolon. However, blanks
between a string and a numeric item or between two numeric items will
stop output without printing the second item.

If a comma or a semicolon is at the end of the output-list, the next
PRINTstatement begins printing on the same line, and spaced accord-
ingly. If no punctuation finishes the list, a carriage-return and a line-
feed are printed at-the end of the data. The next PRINT statement will
begin on the next line. If your output is directed to the screen and the
data printed is longer than 40 columns, the output is continued on the
next screen line.

There is no statement in BASIC with more variety than the PRINT
statement. There are so many symbols, functions, and parameters
associated with this statement that it might almost be considered as a
langoage of its own within BASIC; a language specially designed for
writing on the screen.

EXAMPLESof PRINT Statement:

1)

5 X = 5

10 PRINT -5*X, X-5, X+5, Xi 5

-25 o 10 3125

2)

5 X=9

10 PRINT X;"SQUARED IS";X*X;"AND";

20 PRINT X "CUBED IS" X i 3

9 SQUARED IS 81 AND 9 CUBED IS 729

3)

90 AA$="ALPHA":BB$="BAKER": CC$="CHARLIE":DD$="DOG":
EE$="ECHO"

100 PRINT AABB;CC$ DD$,EE$

ALPHABAKERCHARLIEDOG ECHO

BASIC LANGUAGE VOCABULARY 71

Quote Mode

Once the quote mark (1IIIiI'1J,) is typed, the cursor controls stop
operating and start displaying reversed characters which actually stand
for the cursor control you are hitting. This allows you to program these
cursor controls, because once the text inside the quotes is PRINTed they
perform their functions. The ... key is the only cursor control
not affected by "quote mode."

1. Cursor Movement

The cursor controls which can be "programmed" in quote mode are:

CLR/HOME

CLR/HOME

11 CRSR 11

11 CRSR11

APPEARS AS

II
(J
II
o
II
D

If you wanted the word HELLO to PRINTdiagonally from the upper left
corner of the screen, you would type:

PRINT" _111:...:1111','_ H 11.1I:1"1:.~1 E II.II:~:.II L 11.1I:1,"I:.~1L I~.II'I."I:.II 0"

which would appear as:

PRINT" II H 11 E 11 L 11 L 11 0"
2. Reverse Characters

Holding down the ami key and hitting II will cause II to ap-
pear inside the quotes. This will make all characters start printing in
reverse video (like a negative of a picture). To end the reverse printing

hit 111I II ,which prints a g or else PRINT a .:1:11111:11.(CHR$(13».
(Just ending the PRINT statement without a semicolon or comma will
take care of this.)

3. Color Controls

Holding down the 111I key or [I key with any of the 8 color keys
will make a special reversed character appear in the quotes. When the
character is PRINTed, then the color change will occur.

72 BASIC LANGUAGE VOCABULARY

Ifyou wanted to PRINTthe word HELLO in cyan and the word THERE
in white, type:

PRINT" ami. HELLO .. II THERE"

which would appear as:

PRINT "~ HELLO . THERE"

4. Insert Mode

The spaces created by using the" key have some of the same
characteristics as quote mode. The cursor controls and color controls
show up as reversed characters. The only difference is in the "'and

E8 ' which performs its normal function even in quote mode, now

BASIC LANGUAGE VOCABULARY 73

KEY COLOR APPEARSAS

lEI. Black .
lEI II White II
IIDII Red .
lEI II Cyan

lEI II Purple IJ
&1111 Green n
&11. Blue II
lEI II Yellow iii

[lB Orange 0
[III Brown .[III Light Red
till Grey 1 .
[III Grey 2 C
[III Light Green II
[I. Light Blue 0
[III Grey 3

....

creates the a . And 11II ' which created a special character in
quote mode, inserts spaces normally.

Because of this, it is possible to create a PRINTstatement containing
DEletes, which cannot be PRINTed in quote mode. Here is an example
of how this is done:

which displays as

10 PRINT"HEllO aa P"

When the above line is RUN, the word displayed will be HelP, be-
cause the last two letters are deleted and the P is put in their place.

WARNING:The DELeteswill work when LiSTing as well as PRINTing, so editing a
line with these characters will be difficult.

The "insert mode" condition is ended when the _:1:1111:11_

(or EIII _:1:1111:11_) key is hit, or when as many characters have
been typed as spaces were inserted.

5. Other Special Characters

There are some other characters that can be PRINTed for special
functions, although they are not easily available from the keyboard. In
order to get these into quotes, you must leave empty spaces for them in

the line, hit _:1:1111:11_or EIII _:1:1111:11_, and go back to the

spaces with the cursor controls. Now you must hit ami 8:&'..-r.'J/.
to start typing reversed characters, and type the keys shown below:

Function

BIll _:1;1111:11-
switch to lower case

switch to upper case

disable case-switching keys

enable case-switching keys

Type
IDIIiI
II
EIII.a

II
II

AppearsAs.
II..a

74 BASICLANGUAGE VOCABULARY

The lID .WIIII~j/. will work in the liSTing as well as PRINT-
ing, so editing will be almost impossible if this character is used. The
LiSTing will also look very strange.

PRINT#

TYPE: I/O Statement
FORMAT: PRINT#<file-number> [<variable>]

[<,/;><variable>]

Adions: The PRINT# statement is used to write data items to a logical
file. It must use the same number used to OPEN the file. Output goes to
the device-number used in the OPEN statement. The <variable> ex-

pressions in the output-list can be of any type. The punctuation char-
acters between items are the same as with the PRINT statement and

they can be used in the same ways. The effects of punctuation are
different in two significant respects.

When PRINT# is used with tape files, the comma, instead of spacing
by print zones, has the same effect as a semicolon. Therefore, whether
blanks, commas, semicolons or no punctuation characters are used be-
tween data items, the effect on spacing is the same. The data items are
written as a continuous stream of characters. Numeric items are fol-

lowed by a space and, if positive, are preceded by a space.
If no punctuation finishes the list, a carriage-return and a line-feed

are written at the end of the data. If a comma or semicolon terminates

the output-list, the carriage-return and line-feed are suppressed. Re-
gardless of the punctuation, the next PRINT# statement begins output in
the next available character position. The line-feed will act as a stop
when using the INPUT# statement, leaving an empty variable when the
next INPUT# is executed. The line-feed can be suppressed or compen-
sated for as shown in the examples below.

The easiest way to write more than one variable to a file on tape or
disk is to set a string variable to CHR$(13), and use that string in be-
tween all the other variables when writing the file.

BASIC LANGUAGE VOCABULARY 75

EXAMPLESof PRINT# Statement:

1)

10 OPEN 1,1,1, "TAPEFILE"
20 R$ = CHR$(13)
30 PRINT# 1,1iR$i2iR$i3iR$i4iR$i5
40 PRINT# 1,6
50 PRINT# 1,7

2)

10 CO$=CHR$(44): CR$=CHR$(13)
20 PRINT#l, "AAA"CO$"BBB",

"CCC" i"DDD"i"EEE"CR$
"FFF"CR$i

30 INPUT#l, A$,BCDE$,F$

3)

5 CR$=CHR$(13)
10 PRINT#2, "AAA"iCR$i"BBB"
20 PRINT#2, "CCC"i

30 INPUT#2, A$,B$,DUMMY$,C$

READ

(By Changing the CHR$(13) to
CHR$(44) you put a "," between
each variable. CHR$(59) would
put a ";" between each
variable.)

AAA,BBB CCCDDDEEE
(carriage return)
FFF(carriage return)

(10 blanks) AAA
BBB
(10 blanks)CCC

TYPE: Statement
FORMAT: READ <variable> [,<variable>]

Adion: The READstatement is used to fill variable names from con-

stants in DATAstatements. The data actually read must agree with the
variable types specified or the BASIC error message ?SYNTAX ERROR
will result. Variables in the DATAinput-list must be separated by com-
mas.

A single READstatement can access one or more DATA statements,
which will be accessed in order (see DATA),or several READstatements
can access the same DATAstatement. If more READstatements are exe-

cuted than the number of elements in DATAst~tements(s) in the pro-

76 BASIC LANGUAGE VOCABULARY

gram, the BASIC error message ?OUTOFDATA is printed. If the
number of variables specified is fewer ,than the number of elements in

the DATA statement(s), subsequent READ statements will continue read-
ing at the next data -element. (See RESTORE.)

"NOTE: The ?SYNTAX'ERROR will appear with the line number from the OATA state-
ment, NOT,the READ statement.

EXAMPLESof READ Statement:

no READA,B,C$
120 DATA l,2,HELLO

100 fOR X=1 TO 10: READA(X):NEXT

200 DATA3.08,5.19, 3.12, 3.98, 4.24
210 DATA5.08, 5.55, 4.00, 3.16, 3.37

(Fills array items (line 1) in order of constants shown (line 5»

1 READ CITY$,STATE$,ZIP

5 DATA ,DENVER;COLORADO, 80211

REM

TYPE: Statement
F,ORMAT:REM[<remark>]

,Adion: The REMstatement makes your programs more easily under-
stood when LISTed.It's a reminder to yourself to tell you what you had in
mind when you were writing each section of the program. For instance,
you might want to remember what a variable is used for, or some other
useful information. The REMark can be any text, word, or character
including the colon (:) or BASIC keywords. -

The REMstatement and anything following it on the same line-number
are ignored by BASIC, but REMarks are printed exactly as entered when
the program is listed. A REMstatement can be referred to by a GOTO or
GOSUB'statement, and the execution of the program will continue with
the next higher program line having executable statements.

BASIC LANGUAGE VOCABULARY 77

EXAMPLES of REMStatement:

10 REM CALCULATE AVERAGE VELOCITY

20 FOR X=l TO 20 :REM LOOP FOR TWENTY VALUES

30 SUM=SUM + VEL(X):NEXT
40 AVG=5UM/20

RESTORE

TYPE: Statement
FORMAT:RESTORE

Adion: BASIC maintains an internal pointer to the next DATA constant

to be READ. This pointer can be reset to the first DATA constant in a
program using the RESTORE statement. The RESTORE statement can be

used anywhere in the program to begin re-READing DATA.

EXAMPLESof RESTORE Statement:

100 FOR X=l TO 10: READ A(X): NEXT
200 RESTORE

300 FOR Y=l TO 10: READ B(Y): NEXT

4000 DATA3.08, 5.19, 3.12, 3.98, 4.24
4100 DATA5.08, 5.55, 4.00, 3.16, 3.37

(Fills the two arrays with identical data)

10 DATA1,2,3,4
20 DATA5,6,7,8
30 FOR L=l TO 8
40 READ A: PRINT A
50 NEXT
60 RESTORE
70 FOR L=l TO 8

80 READ A: PRINT A
90 NEXT

78 BASICLANGUAGEVOCABULARY

RETURN

TYPE: Statement
FORMAT: RETURN

Action: The RETURN statement is used to exit from a subroutine called

for by a GOSUB statement. RETURN restarts the rest of your program at

the next executable statement following the GOSUB. If you are nesting
subroutines, each GOSUB must be paired with at least one RETURN
statement. A subroutine can contain any number of RETURN statements,
but the first one encountered will exit the subroutine.

EXAMPLEof RETURNStatement:

10 PRINT "THIS IS THE PROGRAM"
20 GOSU B 1000
30 PRINT "PROGRAM CONTINUES"
40 GOSUB 1000

.50 PRINT "MORE PROGRAM"
60 END
1000 PRINT "THIS IS THE G05UB":RETURN

RIGHT$

TYPE: String Function
FORMAT:RIGHT$ «string>, <numeric»

Action: The RIGHT$ function returns a sub-string taken from the right-

most end of the <string> argument. The length of the sub-string is

defined by the <numeric> argument which can be any integer in the
range of 0 to 255. If the value of the numeric expression is zero, then a

null string ("") is returned. If the value you give in the <numeric>
argument is greater than the length of the <string> then the entire

string is returned.

EXAMPLE of RIGHT$ Function:

10 .MSG$ = "COMMODORE COMPUTERS"

20 PRINT RIGHT$(MSG$,9)
RUN

COMPUTERS

BASIC LANGUAGE VOCABULARY 79

RND

TYPE: Floating-Point Function
FORMAT: RND «numeric»

Adion: RND creates a floating-point random from 0.0 to 1.0. The
computer generates a sequence of random numbers by performing cal-
culations on a starting number, which in computer jargon is called a
seed. The RND function is seeded on system power-up. The <numeric>
argument is a dummy, except for its sign '(positive, zero, or negative).,

If the <numeric> argument is positive, the same "pseudorandom"
sequence of numbers is returned, starting from a given seed ,value. Dif-
ferent number sequences will result from different seeds, but any se-
quence is repeatable by starting from the same seed number. Having a
known sequence of "random" numbers is useful in testing programs.

If you choose a <numeric> argument of zero, then RND generates a
number directly from a free-running hardware clock (the system "jiffy
clock"). Negative arguments cause the' RND function to be re-seeded
with each function call.

EXAMPLESof RND' Fundion:

220 PRINT INT(RND(O)*SO) (Return random integers
0-49)

100 X=INT(RND(1)*6)+INT(RND(1)*6)+2 (Simulates 2 dice)

100 X=INT(RND(1)*1000)+r (Random integers from
1-1000)

100 X=INT(RND(1)*lS0)+100 (Random numbers from
100-249)

100 X=RND(1)*(U-L)+L (Random numbers between

upper (U) and lower
(L) limits)

BO BASIC LANGUAGE VOCABULARY

RUN

TYPE: Command
FORMAT: RUN [<line-number>]

Action: The system command RUN is used to start the program cur-
rently in memory. The RUN command causes an implied CLR operation
to be performed before starting the program. You can avoid the CleaR-
ing operation by using CONT or GOTO to restart a program instead of
RUN. If a <line-number> is specified, your program will start on that
line. Otherwise, the RUN command starts at first line of the program.
The RUN command can also be used within a program. If the <line-
number> you specify doesn't exist, the BASIC error message UNDEF'D
STATEMENToccurs.

A RUNning program stops and BASIC returns to direct mode when an
END or STOP statement is reached, when the last line of the program is
finished, or when a BASIC error occurs during execution.

EXAMPLESof RUN Command:

RUN
RUN 500
RUN X

(Starts at first line of program)
(Starts at line-number 500)
(Starts at line X, or UNDEF'D STATEMENTERROR
if there is no line X)

SAVE

TYPE:Command
FORMAT:SAVE["<file-name>"] [,<device-number>]

[,<address>]

Action: The SAVEcommand is used to store the program that is cur-
rently in memory onto a tape or diskette file. The program being SAVEd
is only affected by the command while the SAVEis happening. The pro-
gram remains in the current computer memory even after the SAVEop-
eration is completed until you put something else there by using another
command. The file type will be "prg" (program). If the <device-

number> is left out, then the C64 will automatically assume that you
want the program saved on cassette, device number 1. If the <device-
number> is an <8>, then the program is written onto disk. The SAVE

BASIC LANGUAGE VOCABULARY B1

statement can be used in your programs and execution will continue
with the next statement after the SAVEis completed.

Programs on tape are automatically stored twice, so that your Com-
modore 64 can check for errors when lOADing the program back in.
When saving programs to tape, the <file-name> and secondary <ad-
dress> are optional. But following a SAVEwith a program name in
quotes (" ") or by a string variable (---$) helps your Commodore 64 find
each program more easily. If the file-name is left out it can NOT be
lOADed by name later on.

A secondary address of 1 will tell the KERNAl to lOAD the tape at a
later time, with the program currently in memory instead of the normal
2048 location. A secondary address of 2 will cause an end-of-tape
marker to follow the program. A secondary address of 3 combines both
functions.

When saving programs onto a disk, the <file-name> must be pre-
sent.

EXAMPLESof SAVE Command:

SAVE (Write to tape without a name)

SAVE"AlPHA", (Store on tape as file-name "alpha")

(Store "alpha" with end-of-tape marker)SAVE"ALPHA", 1, 2

SAVE"FUN.DISK",8

SAVEA$

(SAVESon disk (device 8 is the disk»

(Store on tape with the name A$)

10 SAVE"HI" (SAVEs program and then move to next

progra.m line)

SAVE "ME", 1,3 (Stores at same memory location and
puts an end-of-tape marker on)

82 BASICLANGUAGEVOCABULARY

SGN

TYPE: Integer Function
FORMAT:SGN «numeric»

Action: SGN gives you an integer value depending upon the sign"'of
the <numeric> argument. If the argument is positive the result is 1, if
zero the result is also 0, if negative the result is -1.

EXAMPLEof SGN Function:

90 ON SGN(DV)+2 GOTO 100, 200, 300
(jump to 100 if DV=negative, 200 if DV=O, 300 if DV=positive)

SIN

TYPE: Floating-Point Function
FORMAT:SIN «numeric»

Action: SIN gives you the sine of the <numeric> argument, in ra-
dians. The value of COS(x) is equal to SIN(x+3.1415926512).

EXAMPLEof SIN Function:

235 AA = SIN(1.5): PRINT AA
.997494987

SPC

TYPE: Special Function
FORMAT:SPC «numeric»

Action: The SPC function is used to control the formatting of data, as
either an output to the screen or into a logical file. The number of
SPaCes given by the <numeric> argument are printed, starting at the
first available position. For screen or tape files the value of the argument
is in the range of 0 to 255 and for disk files up to 254. For printer files,
an automatic carriage-return and line-feed will be performed by the
printer if a SPaCe is printed in the last character position of a line. No
SPaCes are printed on the following line.

BASIC lANGUAGE VOCABUlARY 83

EXAMPLEof SPC Function:

10 PRINT "RIGHT "; "HERE &";
20 PRINT SPC(5) "OVER" SPC(14) "THERE"
RUN

RIGHT HERE & OVER THERE

SQR

TYPE: Floating-Point Function.
FORMAT:SQR «numeric»

Action: SQR gives you the value of the SQuare Root of the
<numeric> argument. The value of the argument must not be negative,
or the BASIC error message ?ILLEGALQUANTITY will happen.

EXAMPLEof SQR Function:

FOR J = 2 TO 5: PRINT J*5, SQR(J * 5): NEXT

10 3.16227766
15 3.87298335
20 4.47213595
25 5

READY
)

STATUS

TYPE: Integer Function
FORMAT:STATUS

Action: Returns a completion STATUSfor the last input/output opera-

tion which was performed on an open file. The STATUS can be read
from any peripheral device. The STATUS(or simply ST) keyword is a

84 BASICLANGUAGEVOCABULARY

system defined variable-name into which the KERNAL puts the STATUSof

'1/0 operations. A table of STATUS code values for tape, printer, disk
and RS-232 file operations is shown .below:

EXAMPLESof STATUSFunction:

. 10 OPEN 1, 4: OPEN 2, 8, 4, "MA5TERfILE,5EQ,W"
20 GOSUB 100: REM CHECK STATUS
30 INPUT#2, A$, B, C

_) 40 If STATUSAND 64 THEN 80: REM HANDLE END-Of-fiLE
50 GOSUB 100: REM CHECK STATUS

60 PRINT#1, A$,B; C
70 GOTO 20
80 CLOSE1: CLOSE2
90 GOSUB 100: END
100 IF ST > 0 THEN 9000: REM-HANDLEFILE I/O ERROR
11 0 RETU RN

BASIC LANGUAGE VOCABULARY 85

5T Bit 5T Numeric Cassette Serial Tape Verify
Position Value Read Bus R/w + Load

0 1 time out
write

1 2 :time out

.read

2 4 short block short block

3 8 .Iong block long block

4 16 unrecoverable any mismatch
read 'error

5 32 checksum checksum
error error

6 64 end of file EOI

7 -128 end of tape device not end of tape

present

STEP

TYPE: Statement
FORMAT:[STEP <expression>]

Action: The optional STEP keyword follows the <end-value> expres-
sion in a FOR statement. It defines an increment value for the loop
counter variable. Any value can be used as the STEP increment. Of
course, a STEPvalue of zero will loop forever. If the STEPkeyword is left
out, the increment value will be + 1. When the NEXTstatement in a FOR
loop is reached, the STEPincrement happens. Then the counter is tested
against the end-value to see if the loop is finished. (See FOR statement
for more information.)

NOTE: The STEP value can NOT be changed once it's in the loop.

EXAMPLESof STEP Statement:

25 FOR XX = 2 TO 20 STEP 2 (Loop repeats 10.times)

35 FOR ZZ. = 0 TO -20 STEP-2 (Loop' repeats 11 times}

STOP
TYPE:Statement
FORMAT: STOP

Adion: The STOP statement is used to halt execution of the current

program and return to direct mode. Typing the .:m~rA""I.j:ll key on the
keyboard has the same effect as a STOP statement. The BASIC error
message ?BREAK IN LINE nnnnn is displayed on the screen, followed
by READY. The "nnnnn" is the line-number where the STOP occurs. Any
open files remain. open and all variables are preserved and can be
examined. The program can be restarted by using CONT or GOTO
statements.

EXAMPLESof STOP Statement:

10 INPUT#l, AA, BB, CC
20 IF AA = BBAND BB = CC THENSTOP
30 STOP

(If the variable AA is -1 and BB is equal to CC then:)
BREAKIN LINE 20

BREAKIN LINE 30 (For any other data values)

86 BASIC LANGUAGE VOCABULARY

STR$

TYPE: String Function
FORMAT:STR$ (< numeric»

Adion: STR$.gives you the STRing representation of the numeric value
of the argument. When the STR$ value is converted to each variable
represented in the <numeric> argument, any number shown is fol-
lowed by a space and, if it's positive, it is also preceded by a space.

EXAMPLEof STR$ Function:

100 FLT = 1.5E4: ALPHA$ = STR$(FLT)
110 PRINT FLT,ALPHA$

15000 15000

SYS

TYPE: Statement
FORMAT:SYS <memory-location>

Action: This is the most common way to mix a BASIC program with a
machine language program. The machine language program begins at
the location given in the SYS statement. The system command SYS is
used in either direct or program mode to transfer control of the micro-
processor to an existing machine language program in memory. The
memory-location given is by numeric expression and can be anywhere in
memory, RAM or ROM.

When you're using- the SYS statement you must end that section of
machine language code with an RTS(ReTurn from Subroutine) instruction
so that when the machine language program is finished, the BASIC
execution will resume with the statement following the SYS command.

EXAMPLESof SYS Statement:

SYS 64738 (Jump to System Cold Start in ROM)

10 POKE 4400,96: SYS 4400 (Goes to machine code location 4400

and returns immediately)

BASIC LANGUAGE VOCABULARY 87

TAB

TYPE: Special Function
FORMAT:TAB «numeric»

Action: The TAB function moves :the cursor to a relative SPC move

position on the screen given by the <numeric> argument, starting with
the left-most position of the current line. The value of the argument can
range from 0 to 255. The TAB function should only be used with the
PRINT statement, since it has no effect if used with PRINT# to a logical
file.

EXAMPLEof TAB Function:

100 PRINT "NAME" TAB(25) "AMOUNT": PRINT
110 INPUT#l, NAM$, AMT$
120 PRINT NAM$ TAB(25) AMT$

NAME AMOUNT

G.T. JONES 25.

TAN

TYPE: Floating-Point Function
FORMAT:TAN «numeric»

Action: Returns the tangent of the value of the <numeric> expression
in radians. If the TANfunction overflows, the BASIC error message ?DI-
VISION BY ZERO is displayed.

EXAMPLEof TAN Function:

10 XX = .785398163: YY = TAN(XX)::PRINTYY
1

88 BASIC LANGUAGE VOCABULARY

TIME

TYPE: Numeric Function
FORMAT: TI

Action: The TI function reads the interval TImer. This type of "clock" is
called a "jiffy clock." The "jiffy clock" value is set at zero (initialized)
when you power-up the system. This 1/60 second interval timer is turned
off during tape I/O.

EXAMPLEof TI Function:

10 PRINT TI/60 "SECONDS SINCE POWER UP"

TlME$

TYPE: String Function
FORMAT:TI$

Action: The TI$ timer looks and works like a real clock as long as your
system is powered-on. The hardware interval timer (or jiffy clock) is read
and used to update the value of TI$, which will give you a Time $tring of
six characters in hours, minutes and seconds. The TI$ timer can also be

assigned an arbitrary starting point similar to the way you set your
wristwatch. The value of TI$ is not accurate after tape I/O.

EXAMPLEof 11$ Function:

1 TI$ = "000000": FOR J=l TO 10000: NEXT: PRINT TI$

000011

BASIC LANGUAGE VOCABULARY 89

USR

TYPE: Floating-Point Function
FORMAT:USR «numeric»

Adion: The USR function jumps to a User callable machine language
SubRoutine which has its starting address pointed to by the contents of
memory locations 785-786. The starting address is established before
calling the USR function by using POKE statements to set up locations
785-786. Unless POKEstatements are used, locations 785-786 will give
you an ?ILLEGALQUANTITY error message.

The value of the <numeric> argument is stored in the floating-point
accumulator starting at location 97, for access by the Assembler code,
and the result of the USR function is the value which ends up there when
the subroutine returns to BASIC.

EXAMPLESof USR Fundion:

10 B = T * SIN(Y)
20 C = USR (B/2)
30 D = USR (B/3)

VAL

TYPE: Numeric Function
FORMAT:VAL«string»

Action: Returns a numeric VALue representing the data in the
<string> argument. If the first non-blank character of the string is not a
plus sign (+), minus sign (-), or a digit the VALue returned is zero.
String conversion is finished when the end of the string or any non-digit
character is found (except decimal point or exponential e).

EXAMPLEof VALFundion:

10 INPUT#1, NAM$, ZIP$
20 IF VAL(ZIP$)< 19400 OR VAL(ZIP$)> 96699

THEN PRINT NAM$ TAB(25)"GREATERPHILADELPHIA"

90 BASICLANGUAGEVOCABULARY

VERIFY

TYPE: Command
FORMAT:VERIFY[//<file-name>//] [,<device>]

Adion: The VERIFYcommand is used, in direct or program mode, to
compare the contents of a BASIC program file on tape or disk with the
program currently in memory. VERIFY is normally used right after a
SAVE, to make sure that the program was stored correctly on tape or
disk.

If the <device> number is left out, the program is assumed to be on
the Datassette™ which is device number 1. For tape files, if the <file-
name> is left out, the next program found on the tape will be com-
pared. For disk files (device number 8), the file-name must be present. If
any differences in program text are found, the BASIC error message
?VERIFYERRORis displayed.

A program name can be given either in quotes (" ") or as a string
variable. VERIFYis also used to position a tape just past the last pro-
gram, so that a new program can be added to the tape without acci-
dentally writing over another program.

EXAMPLESof VERIFYCommand:

VERIFY
PRESSPLAYON TAPE
OK
SEARCHING
FOUND <FilENAME>
VERIFYING

(Checks 1st program on tape)

9000 SAVE"ME",S:
9010 VERIFY"ME"iS (looks at device 8 for the program)

BASIC LANGUAGE VOCABULARY 91

WAIT

TYPE: Statement
FORMAT: WAIT <location>, <mask-1> [,<mask-2>]

Action: The WAIT statement causes program execution to be sus-

pended until a given memory address recognizes a specified bit pattern.

In other words WAIT can be used to halt the program until some external
event has occurred. This is done by monitoring the status of bits in the

input/output registers. The data items used with WAIT can be any
numeric expressions, but they will be converted to integer values.

For most programmers, this statement should never be used. It causes

the program to halt until a specific memory location's bits change in a
specific way. This is used for certain I/O operations and almost nothing
else.

The WAIT statement takes the value in the memory location and per-
forms a logical AND operation with the value in mask-I. If there is a

mask-2 in the statement, the result of the first operation is exclusive-

ORed with mask-2. In other words mask-I "filters out" any bits that you
don't want to test. Where the bit is 0 in mask-I, the corresponding bit in
the result will always be O. The mask-2 value flips any bits, so that you
can test for an off condition as well as an on condition. Any bits being

tested for a 0 should have a 1 in the corresponding position in mask-2.

If corresponding bits of the <mask-I> and <mask-2> operands differ,

the exclusive-OR operation gives a bit result of 1. If corresponding bits get

the same result the bit is O. It is possible to enter an infinite pause with the

WAIT statement, in which case the l:mlrj,,"t1l1:.11and .iI:I."tIlI:j8 keys

can be used to recover. Hold down the I:Ullrj,,-I..11I key and then

press .:j:l."tltl:j:ll. The first example below WAITs until a key is pressed on
the tape unit to continue with the program. The second example will WAIT

until a sprite collides with the screen background.

EXAMPLESof WAITStatement:

WAIT I, 32, 32
WAIT 53273, 6, 6
WAIT 36868, 144, 16 (144 & 16 are masks. 144=10010000 in

binary and 16=10000 in binary. The
WAITstatement will halt the pro-
gram until the 128 bit is on or
until the 16 bit is off)

92 BASIC LANGUAGE VOCABULARY

THE COMMODORE 64 KEYBOARD
AND FEATURES

The Operating System has a ten-character keyboard "buffer" that is
used to hold incoming keystrokes until they can be processed. This buf-
fer, or queue, holds keystrokes in the order in which they occur so that
the first one put into the queue is the first one processed. For example; if
a second keystroke occurs before the first. can be processed, the second
character is stored in the buffer, while processing of the first character
continues. After the program has finished with the first character, the
keyboard buffer is examined for more data, and the second keystroke
processed. Without this buffer, rapid keyboard input would occasionally
drop characters.

In other words, the keyboard buffer allows you to "type-ahead!' of
the system, which means it calT anticipate responses to INPUT prompts
or GET statements. As you type on the keys their character values are
lined up, single-file (queued) into the buffer to wait for processing in the
order the keys were struck. This type-ahead feature can give you an
occasional problem where an accidental keystroke causes a program to.
fetch an incorrect character from the buffer.

Normally, incorrect keystrokes present no problem, since they can be
corrected by the CuRSoR-Left [311~i-"l~_ or DELete .I/I.'IIJA'I~. keys
and then retyping the character, and the corrections will be processed
before a following carriage-return. However, if you press the .:I:lIII:~.
key, no corrective action is possible, since all characters in the buffer up
to and including the carriage-return will be processed before any cor-
rections. This situation can be avoided by using a loop to empty the
keyboard buffer before reading an intended response:

10 GET JUNK$: IF JUNK$ <>"" THEN 10: REM EMPTY THE
KEYBOARDBUFFER

In addition to GET and INPUT, the keyboard can also be read using
PEEKto fetch from memory location 197 ($OOC5)the integer value of the

key currently being pressed. If no key is being held when the PEEKis
executed, a value of 64 is returned. The numeric keyboard values,
keyboard symbols and character equivalents (CHR$) are shown in Ap-
pendix C. The following example loops until a key is pressed then con-
verts the integer to a character value.

10 AA = PEEK(197): IF AA = 64 THEN 10

20 BB$ = CHR$(AA)

BASIC LANGUAGE VOCABULARY 93

The keyboard .is treated as a. set of switches organized into. a matrix
of 8 columns by 8 rows. The keyboard matrix is scanned for key
switch-closures by the KERNALusing the CIA #1 1/0 chip (MOS 6526
Complex Interface Adapter). Two CIA registers are used to perform the
scan: register #0 at location 56320 ($DCOO)for keyboard columns and
register #1 at location 56321 ($DC01) for keyboard rows.

Bits 0-7 of memory location 56320 correspond to the columns 0-7.
Bits 0-7 of memory location 56321 correspond to rows 0-7: By writing
column values in sequence, then reading row'values, the KERNALde-
codes the switch closures into the CHR$ (N) value of the key pressed.

Eight columns by eight. rows yields' 64 possible values. However, if you
first strike the ..' 11I3I or. GI keys or hold down
the EIDIiI' key and type a second character, additional values are
generated. This is because the KERNALdecodes these keys separately
and "remembers" when one of the control keys was pressed. The result
of the. keyboard scan is then placed in location 197.

Characters can also be written directly to the keyboard buffer at lo-
cations 631-640 using a POKE statement. These characters will be
.processed when the POKE is used to set a character count into location
198. These facts can be used .to :cause a series of direct-mode com-

mands to be executed automatically by printing the statements onto the
screen, putting carriage-returns into the boffer, and then setting the
character count. In the example below, the program will LIST itself to
the printer and then resume execution.

10 PRINT CHR$(147)"PRINT#1: CLOSE 1: GOTO 50"
20 POKE 631;19: POKE 632,13: POKE 633,13: POKE 198,3
30 OPEN 1,4: CMD1: LIST
40 END
50 REM PROGRAM RE-STARTSHERE

SCREEN EDITOR

The SCREEN EDITOR provides you with powerful and convenient
facilities for editing program text. Once a section of a program is listed
to the screen, the cursor keys and other special keys are used to move
around the screen so that you can make any appropriate changes, After,
making all the changes you want to a specific line-number of text, hit-
ting the .:~:lIm~/. key anywhere on the line, causes the SCREEN
EDITORto read the entire 80-character logical screen line.

.94 BASICLANGUAGEVOCABULARY

The text is then passed to the Interpreter to be tokenized and stored in
the program. The edited line replaces the old version of that line in
memory. An additional copy of any line of text can be created simply by
changing the line-number and pressing .:~:lII':U.~

If you use keyword abbreviations which cause a program line to ex-
ceed 80 character.s, the excess characters will be lost when that line is
edited, because the EDITORwill read only two physical screen lines. This
is also why using INPUT for more than a total of 80 characters is not-
possible. Thus, for all practical purposes, the length of a line of BASIC
text is limited to 80 characters as displayed on the screen.

Under certain conditions the SCREENEDITORtreats the cursor control

keys differently from their normal mode of handling. If the CuRSoR is
positioned to the right of an odd number of double-quote marks (") the
EDITORoperates in what is known as the QUOTE:-MODE.

In quote mode data characters are entered normally but the cursor
controls no longer move the CuRSoR, instead reversed characters are
displayed which actually stand for the cursor control being entered. The
same is true of the color control keys. This allows you to include cursor
and color controls inside string data items in progrgms. You will find that
this is a very important and powerful feature. That's because when the
text inside the quotes is printed to the screen it performs the cursor
positioning and color control functions automatically as port of the
string. An example of using cursor controls in strings is:

You type ~ 10 PRINT" A(R)(R)B(L)(L)(L)C(R)(R)D":REM(R)=CRSR

RIGHT, (L)=CRSR LEFT

Computer prints ~ AC BD

The _ key is the only cursor control NOT affected by quote
mode. Therefore, if an error is mode while keying in quote mode,
the (';;;;111:1."1:".key can't be used to back up and strike over the
error-even the 11II key produces a reverse video character. In-
stead, finish entering the line, and then, after hitting the .:~:lIII:~I.

key, you can edit the line normally. Another alternative, if no further
cursor-controls are needed in the string, is to press the I:mlrj,"tlll:l
and-:I:!."t",'I. keys which- will cancel QUOTE MODE. The cursor
control keys that you can use in strings are shown in Table 2-2.

BASIC LANGUAGE VOCABULARY 95

Table 2-2. Cursor Control Characters in QUOTEMODE

When you are NOT in quote mode, holding down the EDII key and
then pressing the INSerT .11II key shifts data to the right of the cur-
sor to open up space between two characters for entering data between
them. The Editor then begins operating in INSERT MODE until all of the
space opened up is filled.

The cursor controls and color controls again show as reversed char-
acters in insert mode. The only difference occurs on the DELete and

INSerT .I/"'U".I~. key. The _ instead of operating normally as in
the quote mode, now creates the reversed a . The 11III key,
which created a reverse character in quote mode, inserts spaces nor-
mally.

Ths means that a PRINT statement can be created, containing DE-
Letes, which can't be done in quote mode. The insert mode is cancelled
by pressing the .:I:lIII:U., ._ and .:I:lIII:U., or .:llIIr II.11I and

.:1:10'111:1:11keys. Or you can cancel the insert mode by filling all the
inserted spaces. An example of using DELcharacters in strings is:

10 PRINT "HEllO" ..ED P"
(Keystroke sequence shown above, appearance when listed below)
10 PRINT"HELP"

When the example is RUN, the word displayed will be HELP, because
the letters LO are deleted before the P is printed. The DELete character
in strings will work with LISTas well as PRINT. You can use this to "hide"
part or all of a line of text using this technique. However, trying to edit a
line with these characters will be difficult if not impossible.

96 BASIC LANGUAGE VOCABULARY

Control Key Appearance-
CRSR up 'fi1m8 0
CRSR down Em!) m
CRSR left - II
CRSR right EIIm II
CLR ... (J
HOME II
INST -- II

There are some other characters that can be printed for special func-
tions, although they are not easily available from the keyboard. In order
to get these into quotes, you must leave empty spaces for them in the
line, press .:I:lIII:U., and go back to edit the line. Now you hold down
the 11II (ConTRol) key and type _:&''''''''11I_ (ReVerSe-ON) to start

typing reversed characters. Type the keys as shown below:

Key Function
Shifted RETURN

Switch to upper/lower case

Switch to upper/graphics

Key Entered

.11
II.11

Appearance.
II.

Holding down the BIIiI key and hitting .:~:lIIJ:~I_ causes a
carriage-return and line-feed on the screen but does not end the string.
This works with LISTas well as PRINT, so editing will be almost impossi-
ble if this character is used. When output is switched to the printer via
the CMD statement, the reverse "N" character shifts the printer into its
upper-lower case character set and the BIIiI "N" shifts the printer
into the upper-case/graphics character set.

Reverse video characters can be included in strings by holding down

the ConTRol ami key and pressing ReVerSe III, causing a re-
versed R to appear inside the quotes. This will make all characters print
in reverse video (like a negative of a photograph). To end the reverse

printing, press ami and _:&'...,...11:1_ (ReVerSe OFF) by holding
down the ami key and typing the _:&' 1:1_ key, which prints a
reverse R. Numeric data can be printed in reverse video by first printing
a CHR$(18). Printing a CHR$(146) or a carriage-return will cancel re-
verse video output.

BASIC LANGUAGE VOCABULARY 97

GRAPHICS OVERVIEW

All of the graphics abilities of the Commodore 64 come from the 6567
Video Interface Chip (also known as the VIC-II chip). This chip gives a
variety of graphics modes, including a 40 column by 25 line text display,
a 320 by 200 dot high resolution display, and SPRITES, small movable
objects which make writing games simple. And if this weren't enough,
many of the graphics modes can be mixed on the same screen. It is
possible, for example, to define the top half of the screen to be in high
resolution mode, while the bottom half is in text mode. And SPRITESwill
combine with anything! More on sprites later. First the other graphics
modes.

The VIC-II chip has the following graphics display modes:

A) CHARACTER DISPLAYMODES

1) Standard Character Mode
a) ROM characters
b) RAM programmable characters

2) Multi-Color Character Mode
a) ROM characters
b) RAM programmable characters

3) Extended Background Color Mode
a) ROM characters
b) RAM programmable characters

B) BIT MAP MODES

1) Standard Bit Map Mode
2) Multi-Color Bit Map Mode

C) SPRITES

1) Standard Sprites
2) Multi-Color Sprites

100 PROGRAMMING GRAPHICS

GRAPHICS LOCATIONS

Some general information first. There are 1000 possible locations on
the Commodore 64 screen. Normally, the screen starts at location 1024
($0400 in HEXadecimal notation) and goes to location 2023. Each of
these locations is 8 bits wide. This means that it can hold any integer
number from 0 to 255. Connected with screen memory is a group of
1000 locations called COLOR MEMORY or COLOR RAM. These start at

location 55296 ($D800 in HEX) and go up to 56295. Each of the color
RAM locations is 4 bits wide, which means that it can hold any integer
number from 0 to 15. Since there are 16 possible colors that the Com-
modore 64 can use, this works out well.

In addition, there are 256 different characters that can be displayed

at any time. For normal screen display, each of the 1000 locations in
screen memory contains a code number which tells the VIC-II chip which
character to display at that screen location.

The various graphics modes are selected by the 47 CONTROL regis-
ters in the VIC-II chip. Many of the graphics functions can be controlled
by POKEing the correct value into one of the registers. The VIC-II dhip is
located starting at 53248 ($DOOOin HEX)through 53294 ($D02E in HEX).

VIDEO BANK SELECTION

The VIC-II chip can access ("see") 16K of memory at a time. Since
there is 64K of memory in the Commodore 64, you want to be able to
have the VIC-II chip see all of it. There is a way. There are 4 possible
BANKS (or sections) of 16K of memory. All that is needed is some means
of controlling which 16K bank the VIC-II chip looks at. In that way, the
chip can "see" the entire 64K of memory. The BANKSELECT bits that
allow you access to all the different sections of memory are located in
the 6526 COMPLEX INTERFACEADAPTERCHIP #2 (CIA #2). The POKE
and PEEK BASIC statements (or their machine language versions) are
used to select a bank by controlling bits 0 and 1 of PORT A of CIA#2
(location 56576 (or $DDOOHEX». These 2 bits must be set to outputs by
setting bits 0 and 1 of location 56578 ($DD02.HEX) to change banks. The
following example shows this:

POKE 56578,PEEK(56578)OR 3 :REM MAKE SURE BITS 0 AND 1 ARE
SET TO OUTPUTS
POKE 56576,(PEEK(56576)AND 252)OR A:REM CHANGE BANKS

"A" should have one of the following values:

PROGRAMMING GRAPHICS 101

This 16K bank concept is part of everything that the VIC-II chip does.
You should always be aware of which bank the VIC-II chip is pointing

at, since this will affect where character data patterns come from,

where the screen is, where sprites come from, etc. When you turn on the

power of your Commodore 64, bits 0 and 1 of location 56576 are auto-
matically set to BANK 0 ($0000-$3FFF) for all display information.

.NOTE: The Commodore 64 character set is not available to the VIC-II chip in BANKS

1 and 3. (See character memory section.)

SCREEN MEMORY

The location of screen memory can be changed easily by a POKE to

control register 53272 ($DOI8 HEX). However, this register is also used

to control which character set is used, so be careful to avoid disturbing

that part of the control register. The UPPER 4 bits control the location of

screen memory. To move the screen, the following statement should be
used:

POKE53272,(PEEK(53272)AND15)ORA

102 PROGRAMMING GRAPHICS

VALUE BITS BANK STARTING
VIC-II CHIP RANGE

OF A LOCATION

0 00 3 49152 ($COOO-$FFFF)*
1 01 2 32768 ($8000-$BFFF)
2 10 1 16384 ($4000- $7FFF)*
3 11 0 0 ($0000-$3FFF) (DEFAULT VALUE)

Where" A" has one of the following values:

'Remember that the BANK ADDRESS of the VIC-II chip must be added in.

You must also tell the KERNAL'Sscreen editor where the screen is as follows: POKE

648, page (where page = address/256, e.g., 1024/256= 4, so POKE 648,4).

COLOR MEMORY

Color memory can NOTmove. It is always located at locations 55296
($D800) through 56295 ($DBE7). Screen memory (the 1000 locations
starting at 1024) and color memory are used differently in the different
graphics modes. A picture created in one mode will often look com-
pletely different when displayed in another graphics mode.

CHARACTER MEMORY

Exactly where the VIC-II gets it character information is important to
graphic programming. Normally, the chip gets the shapes of the char-
acters you want to be displayed from the CHARACTERGENERATOR
ROM. In this chip are stored the patterns which make up the various
letters, numbers, punctuation symbols, and the other things that you see

PROGRAMMING GRAPHICS 103

LOCATION*
A BITS

DECIMAL HEX

0 OOOOXXXX 0 $0000
16 0001 XXXX 1024 $0400 (DEFAULT)

32 0010XXXX 2048 $0800
48 0011XXXX 3072 $OCOO
64 0100XXXX 4096 $1000
80 0101XXXX 5120 $1400
96 0110XXXX 6144 $1800

112 0111XXXX 7168 $lCOO
128 1000XXXX 8192 $2000
144 1001XXXX 9216 $2400
160 1010XXXX 10240 $2800
176 1011XXXX 11264 $2COO
192 1100XXXX 12288 $3000
208 1101XXXX 13312 $3400
224 1110XXXX 14336 $3800
240 1111 XXXX 15360 $3COO.

on the keyboard. One of the features of the Commodore 64 is the ability
to use patterns located in RAM memory. These RAM patterns are
created by you, and that means that you can have an almost infinite set
of symbols for" games, business applications, etc.

A normal character set contains 256 characters in which each c.har-
acter is defined by 8 bytes of data. Since each character takes up 8
bytes this means that a full character set is 256*8=2K bytes of memory.
Since the VIC-II chip looks at 16K of memory at a time, there are 8
possible locations for a complete character set. Naturally, you are free
to use less than a full character set. However, it must still start at one of
the 8 possible starting locations.

The location of character memory is controlled by 3 bits of the VIC-II
control register located at 53272 ($DOI8 in HEX notation). Bits 3,2, and
1 control where the characters' set is located in 2K blocks. Bit 0 is ig-
nored. Remember that this is the same register that deterrt.ines where
screen memory is located so avoid disturbing the screen memory bits. To
change the location of character me{T1ory,the following BASIC state-
ment can be used:

POKE 53272,(PEEK(53272)AND240)OR A

Where A is one of the following values:

'Remember to add in the BANKaddress.

104 PROGRAMMING GRAPHICS

VALUEI

LOCATION OF CHARACTER MEMORY*
BITS

of A DECIMAL HEX

0 XXXXOOOX 0 $0000-$07FF
2 XXXXOOIX 2048 $0800-$OFFF

4 XXXXOI0X 4096 $1000-$17FF ROM IMAGE in BANK

o & 2 (default)
6 XXXXOIIX 6144 $1800-$1 FFF ROM IMAGE in BANK

0&2

8 XXXX 1 OOX 8192 $2000-$27FF
10 XXXXI0IX 10240 $2800-$2FFF
12 XXXXII0X 12288 $3000-$37FF
14 XXXXIIIX 14336 $3800-$3FFF

The ROM IMAGE in the above table refers to the character generator

ROM. It appears in place of RAM at the above locations in bank O. It

also appears in the corresponding RAM at locations 36864-40959
($9000-$9FFF) in bank 2. Since the VIC-II chip can only access 16K of

memory at a time, the ROM character patterns appear in the 16K block

of memory the VIC-II chip looks at. Therefore, the system was designed

to make the VIC-II chip think that the ROM characters are at 4096-8191
($1000-$1 FFF) when your data is in bank 0, and 36864-40959

($9000-$9FFF) when your data is in bank 2, even though the character

ROM is actually at location 53248-57343 ($DOOO-$DFFF). This imaging

only applies to character data as seen by the VIC-II chip. It can be used

for programs, other data, etc., just like any other RAM memory.

NOTE: If these ROM images get in the way of your own graphics, then set the BANK
SELECT BITS to one of the BANKS without the images (BANKS 1 or 3). The ROM

patterns won't be there.

The location and contents of the character set in ROM are as follows:

Sharp-eyed readers will have just noticed something. The locations
occupied by the character ROM are the same as the ones occupied by
the VIC-II chip control registers. This is possible because they don't oc-
cupy the same locations at the same time. When the VIC-II chip needs to

PROGRAMMINGGRAPHICS 105

ADDRESS VIC-II CONTENTS
BLOCK DECIMAL HEX IMAGE

0 53248 DOOO- D1FF 1000- 11FF Upper case characters
53760 D200- D3FF 1200-13FF Graphics characters

54272 D400- D5FF 1400-15FF Reversed upper case
characters

54784 D600- D7FF 1600- 17FF Reversed graphics
characters

1 55296 D800- D9FF 1800- 19FF Lower case characters

55808 DAOO- DBFF 1AOO- 1BFF Upper case & graphics
characters

56320 DCOO- DDFF 1COO- 1DFF Reversed lower case
characters

56832 DEOO-DFFF 1EOO- 1FFF Reversed upper case &
graphics characters

access character data the ROM is switched in. It becomes an image in
the 16K bank of memory that the VIC-II chip is looking at. Otherwise,
the area is occupied by the I/O control registers, and the character ROM
is only available to the VIC-II chip.

However, you may need to get to the character ROM if you are going
to use programmable characters and want to copy some of the char-
acter ROM for some of your character definitions. In this case you must
switch out the I/O register, switch in the character ROM, and do your
copying. When you're finished, you must switch the I/O registers back in
again. During the copying process (when I/O is switched out) no inter-
rupts can be allowed to take place. This is because the I/O registers are
needed to service the interrupts. If you forget and perform an interrupt,
really strange things happen. The keyboard should not be read during
the copying process. To turn off the keyboard and other normal inter-
rupts that occur with your Commodore 64, the following POKE should be
used:

POKE 56334,PEEK(56334)AND254 (TURNS INTERRUPTS OFF)

After you are finished getting characters from the character ROM,
and are ready to continue with your program, you must turn the
keyboard scan back on by the following POKE:

POKE 56334,PEEK(56334)ORI (TURNS INTERRUPTS ON)

The following POKE will switch out I/O and switch the CHARACTER
ROM in:

POKE l,PEEK(1)AND251

The character ROM is now in the locations from 53248-57343 ($DOOO-

$DFFF).
To switch I/O back into $DOOOfor normal operation use the following

POKE:

POKE l,PEEK(l)OR 4

106 PROGRAMMING GRAPHICS

STANDARD CHARACTER MODE

Standard character mode is the mode the Commodore 64 is in when

you first turn it on. It is the mode you will generally program in.
Characters can be taken from ROM or from RAM, but normally they

are taken from ROM. When you want special graphics characters for a
program, all you have to do is define the new character shapes in RAM,
and tell the VIC-II chip to get its character information from there in-
stead of the character ROM. This is covered in more detail in the next
section.

In order to display characters on the screen in color, the VIC-II chip
accesses the screen memory to determine the character code for that
location on the screen. At the same time, it accesses the color memory
to determine what color you want for the character displayed. The
character code is translated by the VIC-II into the starting address of the
8-byte block holding your character pattern. The 8-byte block is located
in character memory.

The translation isn't too complicated, but a number of items are com-
bined to generate the desired address. First the character code you use
to POKE screen memory is multiplied by 8. Next add the start of char-
acter memory (see CHARACTERMEMORYsection). Then the Bank Select
Bits are taken into account by adding in the base address (see VIDEO
BANK SELECTIONsection). Below is a simple formula to illustrate what
happens:

CHARACTER ADDRESS = SCREEN CODE*8+(CHARACTER
S ET* 2048) + (BAN K* 16384)

CHARACTER DEFINITIONS

Each character is formed in an 8 by 8 grid of dots, where each dot
may be either on or off. The Commodore 64 character images are
stored in the Character Generator ROM chip. The characters are stored
as a set of 8 bytes for each character, with each byte representing the

dot pattern of a row in the character, and each bit representing a dot.
A zero bit means that dot is off, and a one bit means the dot is on.

The character memory in ROM begins at location 53248 (when the I/O
is switched off). The first 8 bytes from location 53248 ($DOOO)to 53255
($D007) contain the pattern for the @ sign, which has a character code
value of zero in the screen memory. The next 8 bytes, from location

PROGRAMMINGGRAPHICS 107

53256 ($D008) to 53263 ($DOOF), contain the information for forming the

letter A.

Each complete character set takes up 2K (2048 bits) of memory, 8

bytes per character and 256 characters. Since there are two character

sets, one for upper case and graphics and the other with upper and

lower case, the character generator ROM takes up a total of 4K loca-

tions.

PROGRAMMABLE CHARACTERS

Since the characters are stored in ROM, it would seem that there is no

way to change them for customizing characters. However, the memory

location that tells the VIC-II chip where to find the characters is a pro-

grammable register which can be changed to point to many sections of

memory. By changing the character memory pointer to point to RAM,

the character set may be programmed for any need.

If you want your character set to be located in RAM, there are a few

VERY IMPORTANT things to take into account when you decide to actu-

ally program your own charadter sets. In addition, there are two other

important points you must know to create your own special characters:

1) Itisan allor nothing pr0gess. Generally, ifyou use your own char-

acter set by telling the Vlt-II chip to get the character information

from the area you have prepared in RAM, the standard Commo-

dore 64 characters are unavailable to you. To solve this, you must

copy any letters,numbers, or standard Commodore 64 graphics

you intend to use intoyour own character memory in RAM. You can

pick and choose, take only the ones you want, and don't even

have to keep them in order!

108 PROGRAMMING GRAPHICS

IMAGE BINARY PEEK
** 00011000 24
**** 00111100 60
** **

011 0011 0 102
****** 01111110 126
** **

011 0011 0 102
** ** 01100110 102
** **

011 0011 0 102

00000000 0

2) Your character set takes memory space away from your BASIC
program. Of course, with 38K available for a BASIC program,
most applications won't have problems.

WARNING: You must be careful to protect the character set from being overwritten

by your BASIC program, which also uses the RAM.

There are two locations in the Commodore 64 to start your character
set that should NOT be used with BASIC: location 0 and location
2048. The first should not be used because the system stores important
data on page O. The second can't be used because that is where your
BASIC program starts! However, there are 6 other starting positions for
your custom character set.

The best place to put your character set for use with BASIC while
experimenting is beginning at 12288 ($3000 in HEX). This is done by
POKEing the low 4 bits of location 53272 with 12. Trythe POKE now, like
this:

POKE 53272,(PEEK(53272)AND240)+ 12

Immediately, all the letters on the screen turn to garbage, This is
because there are no characters set up at location 12288 right now. . .
only random bytes. Set the Commodore 64 back to normal by hitting
the .:mlr~'111111key and "then the .~j:l-'1(oI~j:llkey.

Now let's begin creating graphics characters. To protect your char-
acter set from BASIC, you should reduce the amount of memory BASIC
thinks it has. The amount of memory in your computer stays the
same. . . it's just that you've told BASIC not to use some of it. Type:

PRINT FRE(O)-(SGN(FRE(O»<O)*65535

The number displayed is the amount of memory space left unused. Now

type the following:

POKE 52,48:POKE56,48:CLR

Now type:

PRINT FRE(O)-(SGN(FRE(O»<0)*65535

PROGRAMMINGGRAPHICS 109

See the change? BASIC now thinks it has less memory to work with. The
memory you just claimed from BASIC is where you are going to put your
character set, safe from actions of BASIC.

The next step is to put your characters into RAM. When you begin,
there is random data beginning at 12288 ($3000 HEX). You must put
character patterns in RAM (in the same style as the ones in ROM) for the
VIC-II chip to use.

The following program moves 64 characters from ROM to your char-
acter set RAM:

5 PRINTCHR$(142) :REMSWITCH TO
UPPER CASE
10 POKE52,48:POKE56,48:CLR :REM RESERVE MEMORY
FOR CHARACTERS
20 POKE56334, PEEK (56334) At.m254 :REt1 TURt.~OFF
KEYSCAN INTERRUPTTIMER
30 POKE1,PEEK(1)AND251 :REMSWITCH IN
CHARACTER
4121 FOR I=0T0511 :POKE I+ 12288., PEEK (1+53248) : t~E:":T

50 POKE1,PEEK(1)OR4 :REM SWITCH IN I/O
60 POKE56334,PEEK(56334)OR1 :REM RESTART
KEYSCAN INTERRUPT TIMER
70 Et~D

Now POKE location 53272 with (PEEK(53272)AND240)+ 12. Nothing
happens, right? Well, almost nothing. The Commodore 64 is now getting
it's character information from your RAM, instead of from ROM. But
since we copied the characters from ROM exactly, no difference can be
seen. . . . yet.

You can easily change the characters now. Clear the screen and type
an @ sign. Move the cursor down a couple of lines, then type:

FOR I = 12288 TO 12288+7:POKE I, 255 - PEEK(I): NEXT

You just created a reversed @ sign!

TIP: Reverse.d characters are just characters with their bit patterns in character memory
reversed.

Now move the cursor up to the program again and hit ...
again to re-reverse the character (bring it back to. normal). By looking at
the table of screen display codes, you can figure out where in RAMeach
character is. Just remember that each character takes eight memory
locations to store. Here's a few examples just to get you started:

110 PROGRAMMING GRAPHICS

Remember that we only took the first 64 characters. Something else

will have to be done if you want one of the other characters.

What if you wanted character number 154, a reversed Z? Well, you
could make it yourself, by reversing a Z, or you could copy the set of
reversed characters from the ROM, or just take the one. character you

want from ROM and replace one of the characters you have in RAM that

you don't need.
Suppose you decide that you won't need the> sign. Let's replace the

> sign with the reversed Z. Type this:

FOR 1=0 TO 7: POKE 12784 + I, 255-PEEK(I+12496): NEXT

Now type a > sign. It comes up as a reversed Z. No matter how

many times you type the>, it comes out as a reversed Z. (This change
is really an illusion. Though the> sign looks like a reversed Z, it still acts

like a >in a program. Try something that needs a > sign. It will still

work fine, only it will look strange.)

A quick review: You can now copy characters from ROM into RAM.
You can even pick and choose only the ones you want. There's only one

step left in programmable characters (the best step!) . . . making your
own characters.

Remember how characters are stored in ROM? Each character is

stored as a group of eight bytes. The bit patterns of the bytes directly
control the character. If you arrange 8 bytes, one on top of another,
and write out each byte as eight binary digits, it forms an eight by eight
matrix, looking like the characters. When a bit is a one, there is a dot at
that location. When a bit is a zero, there is a space at that location.

When creating your own characters, you set up the same kind of table
In memory. Type NEWand then type this program:

10 FOR I = 12448 TO 12455 : READ A: POKE I,A: NEXT

20 DATA 60, 66, 165, 129, 165, 153, 66, 60

PROGRAMMING GRAPHICS 111

CHARACTER DISPLAYCODE CURRENTSTARTINGLOCATION IN RAM

@ 0 12288
A 1 12296
! 33 12552

> 62 12784

Now type RUN. The program will replace the letter T with a smile face
character. Type a few 1's to see the face. Each of the numbers in the
DATA statement in line 20 is a row in the smile face character. The
matrix for the face looks like this:

1

7 6 5 4 2 1 o
o

2

3

4

5

6

7

Figure 3-1. Programmable Character Worksheet.

112 PROGRAMMING GRAPHICS

7 65432 1 0 BINARY DECIMAL

ROW 0 * * * * 001111 00 60
1 * * 01000010 66
2 * * * * 10100101 165
3 * * 10000001 129
4 * * * * 10100101 165
5 * * * * 10011001 153
6 * * 01000010 66

ROW 7 * * * * 001111:00 60

The Programmable Character Worksheet (Figure 3-1) will help you
design your own characters. There is an 8 by 8 matrix on the sheet, with
row numbers, and numbers at the top of each column. (If you view each
row as a binary word, the numbers are the value of that bit position.
Each is a power of 2. The leftmost bit is equal to 128 or 2 to the 7th
power, the next is equal to 64 or 2 to the 6th, and so on, until you reach
the rightmost bit (bit 0) which is equal to 1 or 2 to the 0 power.)

Place an X on the matrix at every location where you want a dot to be
in your character. When your character is ready you can create the
DATAstatement for your character.

Begin with the first row. Wherever you placed an X, take the number
at the top of the column (the power-of-2 number, as explained above)
and write it down. When you have the numbers for every column of the
first row, add them together. Write this number down, next to the row.
This is the number that you will put into the DATAstatement to draw this
row.

Do the same thing with all of the other rows (I -7). When you are

finished you should have 8 numbers between 0 and 255. If any of your
numbers are not within range, recheck your addition. The numbers must
be in this range to be correct! If you have less than 8 numbers, you
missed a row. It's OK if some are o. The 0 rows are just as important as
the other numbers.

Replace the numbers in the DATAstatement in line 20 with the num-
bers you just calculated, and RUN the program. Then type a T. Every
time you type it, you'll see your own character!

If you don't like the way the character turned out, just change the
numbers in the DATAstatement and re-RUN the program until you are

happy with your character.
That's all there is to it!

HINT: For best results, always make any vertical lines in your characters at least 2

dots (bits) wide. This helps prevent CHROMA noise (color distortion) on your char-

acters when they ore displayed on a TV screen.

PROGRAMMING GRAPHICS 113

Here is an example of a program using standard programmable
characters:

10 REM* EXAMPLE1 *
2121REM CREATING PROGRAMMABLE CHARACTERS
31 POKE56334.PEEK(56334)AND254:POKE1,PEEK(I)AND251:
REM TURN OFF KB AND 110
35 FORI=0T063:REM CHARACTER RANGE TO BE COPIED
FROt1 ROM
36 FORJ=0T07:REM COPY ALL 8 BYTES PER CHARACTER
37 POKEI2288+I~8+J,PEEK(53248+I*8+J);REM COpy A
B'r'TE
38 NEXTJ:NEXTI:REM GOTO NEXT BYTE OR CHARACTER
39 POKE1,PEEK(I)OR4:POKE56334,PEEK(56334)OR1;REM
TURN ON 1/0 AND KB
40 POKE532?2,(PEEK(53272)AND240)+12:REM SET CHAR
POINTER TO MEM. 12288
6121FORCHAR=60TOG3:REM PROGRAM CHARACTERS 6121THRU 63
8121FORBYTE=I21TO?;REM DO ALL 8 BYTES OF A CHARACTER
10121READ NUMBER:REM READ IN 1/8TH OF CHARACTER DATA
12121POKE 12288+ (S*-CHAR)+B'r'TE.. NUMBER: REM STORE THE
DATA I t.~ t1EMOR'T'
14121 NEXTBYTE:NEXTCHAR;REM ALSO COULD BE NEXT BYTE,
CHAR
15121 PRINTCHR$(147)TAB(255)CHR$(60);
155 PRINTCHR$(61)TAB(55)CHR$(62)CHR$(63)
160 REM LINE 150 PUTS THE NEWLY DEFINED CHARACTERS
Ot~ THE SCREEN
170 GETA$:REM WAIT FOR USER TO PRESS A KEY
18121 I FA$=" "THE~~GOTO171.::1: REM I F ~m KE'r'S ~.jERE PRESSED,

TR'T' AGAIN!
19121POKE53272,21:REM RETURN TO NORMAL CHARACTERS
21210 DATA4.G,?,5,7,?3,3:REM DATA FOR CHARACTER 6121
21121 DATA 32,96,224, 16121,224,224,192,192;REM DATA
FOR CHARACTER 61
22121 DATA?,7,7.31,31,95, 143,127:REM DATA FOR
CHARACTER 62
23121 DATA 224,224.224,248,248,248,24121,224:REM DATA
FOR CHARACTER 63
240 END

114 PROGRAMMING GRAPHICS

MULTI-COLOR MODE GRAPHICS

Standard high-resolution graphics give you control of very small dots
on the screen. Each dot in character memory can have 2 possible
values, 1 for on and 0 for off. When a dot is off, the color of the screen
is used in the space reserved for that dot. If the dot is on, the dot is
colored with the character color you have chosen for that screen posi-
tion. When you're using standard high-resolution graphics, all the dots
within each 8 X 8 character can either have background color or fore-
ground color. In some ways this limits the color resolution within that
space. For example, problems may occur when two different colored
lines cross.

Multi-color mode gives you a solution to this problem. Each dot in
multi-color mode can be one of 4 colors: screen color (background color
register #0), the color in background register #1, the color in back-
ground color register #2, or character color. The only sacrifice is in the
horizontal resolution, because each multi-color mode dot is twice as
wide as a high-resolution dot. This minimal loss of resolution is more
than compensated for by the extra abilities of multi-color mode.

MULTI-COLOR MODE BIT

To turn on multi-color character mode, set bit 4 of the VIC-II control

register at 53270 ($D016) to a 1 by using the following POKE:

POKE 53270,PEEK(53270)OR 16

To turn off multi-color character mode, set bit 4 of location 53270 to a

o by the following POKE:

POKE 53270,PEEK(53270)AND 239

Multi-color mode is set on or off for each space on the screen, so that
multi-color graphics can be mixed with high-resolution (hi-res) graphics.
This is controlled by bit 3 in color memory. Color memory begins at
location 55296 ($D800 in HEX). If the number in color memory is less

than 8 (0-7) the corresponding space on the video screen will be
standard hi-res, in the color (0-7) you've chosen. If the number located
in color memory is greater or equal to 8 (from 8 to 15), then that space
will be displayed in multi-color mode.

PROGRAMMINGGRAPHICS 115

By POKEing a number into color memory, you can change the color of
the character in that position on the screen. POKEing a number from 0 to
7 gives the normal character colors. POKEing a number between 8 and
15 puts the space into multi-color mode. In other words, turning BIT 3
ON in color memory, sets MULTI-COLORMODE. Turning BIT 3 OFF in
color memory, sets the normal, HIGH-RESOLUTIONmode.

Once multi-color mode is set in a space, the bits in the character
determine which colors are displayed for the dots. For example, here is
a picture of the letter A, and its bit pattern:

In normal or high-resolution mode, the screen color is displayed
everywhere there is a 0 bit, and the character color is displayed where
the bit is a 1. Multi-color mode uses the bits in pairs, like so:

IMAGE
AABB

CCCC
AABBAABB

AACCCCBB
AABBAABB

AABBAABB
AABBAABB

BIT PATTERN

00 01 10 00
00 11 11 00
01 10 01 10
01 11 11 10
01 1001 10
01 10 01 10
01 10 01 10
00 00 00 00

In the image area above, the spaces marked AA are drawn in the
background #1 color, the spaces marked BB use the background #2
color, and the spaces marked CC use the character color. The bit pairs
determine this, according to the following chart;

116 PROGRAMMING GRAPHICS

IMAGE BIT PATTERN
** 00011 000

***** 00111100
** ** 0110011 0
****** 01111110
** ** 01100110
** ** 011 00110
** ** 011 0011 0

00000000

NOTE: The sprite foreground color is a 10. The character foreground color is a 11.

Type NEW and then type this demonstration program:

lee POKE53281,I:REM SET BACKGROUND COLOR i0 TO
~IHITE
110 POKE53282,3:REM SET BACKGROUND COLOR il TO CYAN
1213 POKE53283,8:REM SET BACKGROUND COLOR i2 TO
ORANGE
1313 POKE5327ehPEEK (53270) OR16 : REt1 TURr~ Ot~
t'1ULTI COLOR t10DE
1413 C=13*4096+8*256:REM SET C TO POINT TO COLOR
t1Et10RY
1513 PRItHCHR$(147) "AAAAAAAAAA"

.1613 FORL-=13T09
179 POKEC+L,8:REM USE MULTI BLACK
1813 t'~E;:n

The screen color is white, the character color is black, one color regis-
ter is cyan (greenish blue), the other is orange.

You're not really putting color codes in the :space for character color,
you're actually using references to the registers associated with those
colors. This conserves memory, since 2 bits can be used to pick 16 colors
(background) or 8 colors (character). This also 'makes some neat tricks
possible. Simply changing one of the indirect registers will change every
dot drawn in that color. Therefore everything drawn in the screen and

PROGRAMMINGGRAPHICS 117

BIT PAIR COLOR REGISTER LOCATION

00 Background #0 color (screen color) 53281 ($D021)
01 Background #1 color 53282 ($D022)
10 Background #2 color 53283 ($D023)
11 Color specified by the color RAM

lower 3 bits in color memory

background colors can be changed on the whole screen instantly. Here
is an example of changing background color register #1:

10121 POKE53270.PEEK(5327e)OR16:REM TURN ON
~IULTI COLOR t10DE
110 PRINTCHR$(147)CHR$(18),

Aa
12121PR I ~n" ;:t~"; : REM TYPE C= ~\ 1 FOR ORANGE OR
MULTICOLOR BLACK BACKGROUND
130 FORL=1T022: PRINTCHR$(65) ,: NEXT
135 FORT=1T0500:NEXT

140 PRI ~n" =f.7~1;';~ TYPE CTRL .!\ 7 FOR BLUE COLOR
CHA~jGE
145 FORT=1T0500:NEXT

~a
150 PRINT"8HIT A KEY"
1610 GETI'=!$:I FA$=" "THEN 160
170 X=INT(RND(1)~16)
18121 POKE 53282.X
19121GOTO 160

By using the [I key and the COLOR keys the characters can be
changed to any color, including multi-color characters. For example,
type this command:

POKE 53270,PEEK(53270)OR 16:PRINT " II ";: REM LT.RED/

MULTI-COLORRED t ~

~
The word READY and anything else you type will be displayed in

multi-color mode. Another color control can set you back to regular text.

118 PROGRAMMING GRAPHICS

Here is an example of a program using multi-color programmable
characters:

10 REM ~ EXAMPLE 2'~

2(1 REt1 CF.:EAT II.m t1ULT I COLOR PROGRAt1t1ABLE CHARACTERS
31 POKE56334,PEEK(56334)AND254:POKE1,PEEKC1)AND251
35 FOP I =OT063 :REt1 CHARACTER F.:ANGETO I:E COP IED
FRor1 F.:or1

36 FOR,J=0TCi?: REt1 COP'r' ALL 8 B'T'TES PEF.:CHAF.:ACTER
37 POKE 1228:::+U:::+,J.'PEEK(5:;:248+I~8+J): REt1 COP',.'A
B'T'TE

38 NEXTJ,I:REM GOTO NEXT BYTE OR CHARACTER

:39 POKE 1 , PEEK (1 ::00F.:4 : POKE56334, PEEK (56:;;:34) OF.:1 : R:Et1
TURN ON I/O AND KB
4C1 POKE5::'=:272.. (PEEK (5:;;:272) AHD24E:1) + 12 : REM SET CHAF.:

POINTER TO MEM. 12288
50 POI<E53270., PEEJ<(5327121) OF.:16
51 POKE532:::! 1 .' (I : REt1 SET BACKGROUI.m
52 POKE53282,2:REM SET BACKGROUND
53 POKE53283,7:REM SET BACKGROUND
\'ELLm..1
6121FORCHI"!R=6(1T06:;:: R:Et'1 PROGRAt'1 CHARACTEF.:S 60 THRU 63
:30 FORB'T'TE=(IT07: F.:Et1 DO ALL 8 1;:'T'TES OF A CHARf'iCTEF.:
:l00 F::EADHUt1BEF.::PEt'1 REi"1D 1 ':::TH OF CHARACTEF.: DATA
120 POKEI2288+(8*CHAR)+BYTE,NUMBER:REM STORE THE
DATI"! I~1 t'IEt'IOR''''

140 NEXTBYTE,CHAR

15121 ~rDIm
PRINT"~"TAB(255)CHR$(60)CHR$(61)TAB(55)CHR$(62)CHR$(63)
160 REt'l L I t.jE 150 PUTS THE l.jEJ,1L'T'DEFI HED CHARACTEF.:S
ON THE SCREEI'-.I
1 ;'[1 GET I,,!:$::PEr1 J,1f'iI T FOF.: USEF.: TO PF.:ESS A I<E'T'
1:3121 I FfU:=" "THEI..j 1 7(1 : REt'1 IF 1.10 KE',.'S t.JEF.:E PRESSED.,
TR'T' AOA Hj
19121 POKE53272'., 21: POI<E5:;;:27121.. PEEI«53271)AI.jIf239: F.:Et1
RETIJRN TO NORMAL CHARACTERS
200 DATAI29,37,21,29,93.85,85,85'REM DATA FOR
CHARACTER 6121
210 DRTA66,72,84,116,117,85,85,85:REM DATA FOR
CHAF.:~1CTEF.' 61
220 DATA87,87,85,21,8,S,40,O:REM DATA FOR
CHI=IF::AC"':::R 6;<:
238 DR-' fQ 13, 213.. 85.. :::4., 32.. 3Z~., 40.. 0 : F.:Et'1 DATA FOR
CHf~F.:ACTEF.: 6::"
24~:1 EI.m

COLOR #0 TO BLACK
COLOR #1 TO F.:ED

COLOR #2 TO

PROGRAMMINGGRAPHICS 119

EXTENDED BACKGROUND COLOR MODE

Extended background color mode gives you control over the back-
ground color of each individual character, as well as over the fore-
ground color. For example, in this mode you could display a blue char-
acter with a yellow background on a white screen.

There are 4 registers available for extended background color mode.
Each of the registers can be set to any of the 16 colors.

Color memory is used to hold the foreground color in extended back-
ground mode. It is used the same as in standard character mode.

Extended character mode places a limit on the number of different
characters you can display, however. When extended color mode is on,
only the first 64 characters in the character ROM (or the first 64 char-
acters in your programmable character set) can be used. This is be-
cause two of the bits of the character code are used to select the back-

ground color. It might work something like this:
The character code (the number you would POKE.to the. screen) of the

letter "A" is a 1. When extended color mode is on, if you POKEd a 1 to
the screen, an "A" would appear. If you POKEd a 65 to the screen
normally, you would expect the character with character code (CHR$)
129 to appear, which is a reversed "A." This does NOT happen in ex-
tended color mode. Instead you get the same unreversed "A" as before,
but on a different background color. The following chart gives the
codes:

Extended color mode is turned ON by setting bit 6 of the VIC-II regis-
ter to a .1at location 53265 ($D011 in HEX). The following POKE does it:

POKE 53265, PEEK(53265)OR 64

120 PROGRAMMING GRAPHICS

CHARACTERCODE BACKGROUND COLOR REGISTER

RANGE BIT 7 BIT 6 NUMBER ADDRESS

0-63 0 0 0 53281 ($D021)
64-127 0 1 1 53282 ($D022)
128-191 1 0 2 53283 ($D023)
192-255 1 1 3 53284 ($D024)

Extended color mode is turned OFF by setting bit 6 of the VIC-II regis-
ter to a 0 at location 53265 ($D011). The following statement will do this:

POKE 53265, PEEK(53265)AND 191

BIT MAPPED GRAPHICS

When writing games, plotting charts for business applications, or
other types of programs, sooner or later you get to the point where you
want high-resolution displays.

The Commodore 64 has been designed to do just that: high resolution
is available through bit mapping of the screen. Bit mapping is the
method in which each possible dot (pixel) of resolution on the screen is
assigned its own bit (location) in memory. If that memory bit is a one,
the dot it is assigned to is on. If the bit is set to zero, the dot is off.

High-resolution graphic design has a couple of drawbacks, which is

why it is not used all the time. First of all, it takes lots of memory to bit
map the entire screen. This is because every pixel must have a memory
bit to control it. You are going to need one bit of memory for each pixel
(or one byte for 8 pixels). Since each character is 8 by 8, and there are
40 lines with 25 characters in each line, the resolution is 320 pixels (dots)
by 200 pixels for the whole screen. That gives you 64000 separate dots,
each of which requires a bit in memory. In other words, 8000 bytes of
memory are needed to map the whole screen.

Generally, high-resolution operations are made of many short, sim-
ple, repetitive routines. Unfortunately, this kind of thing is usually rather
slow if you are trying to write high-resolution routines in BASIC. How-
ever, short, simple, repetitive routines are exactly what machine lan-
guage does best. The solution is to either write your programs entirely in
machine language, or call machine language, high-resolution sub-
routines from your BASIC program using the SYS command from BASIC.
That way you get both the ease of writing in BASIC, and the speed of
machine language for graphics. The VSP cartridge is also available to
add high-resolution commands to COMMODORE 64 BASIC.

All of the examples given in this section will be in BASICto make them
clear. Now to the technical details.

BITMAPPING is one of the most popular graphics techniques in the
computer world. It is used to create highly detailed pictures. Basically,
when the Commodore 64 goes into bit map mode, it directly displays an

PROGRAMMING GRAPHICS 121

8K section of memory on the TV screen. When in bit map mode, you can
directly control whether an individual dot on the screen is on or off.

There are two types of bit mapping available on the Commodore 64.
They are:

1) Standard (high-resolution) bit mapped mode (320-dot by 200-dot
resolution)

2) Multi-color bit mapped mode (160-dot by 200-dot resolution)

Each is very similar to the character type it is named for: standard has
greater resolution, but fewer color selections. On the other hand, multi-
color bit mapping trades horizontal resolution for a greater number of
colors in an 8-dot by a-dot square.

STANDARD HIGH-RESOLUTION BIT MAP MODE

Standard bit map mode gives you a 320 horizontal dot by 200 vertical
dot resolution, with a choice of 2 colors in each 8-dot by 8-dot section.
Bit map mode is selected (turned ON) by setting bit 5 of the VIC-II
control register to a 1 at location 53265 ($DOll in HEX). The following
POKE will do this:

POKE 53265,PEEK(53265)OR 32

Bit map mode is turned OFF by setting bit 5 of the VIC-II control
register to 0 at location 53265 ($D011), like this:

POKE 53265,PEEK(53265)AND 223

Before we get into the details of the bit map mode, there is one more
issue to tackle, and that is where to locate the bit map area.

HOW IT WORKS

If you remember the PROGRAMMABLECHARACTERSsection you will
recall that you were able to set the bit pattern of a character stored in

RAMto almost anything you wanted. If at the same time you change the
character that is displayed on the screen, you would be able to change
a single dot, and watch it happen. This is the basis of bit-mapping. The

122 PROGRAMMING GRAPHICS

entire screen is filled with programmable characters, and you make
your changes directly into the memory that the programmable char-
acters get their patterns from.

Each of the locations in screen memory that were used to control what
character was displayed, are now used for color information. For
example, instead of POKEing a 1 in location 1024 to make an "A" ap-
pear in the top left hand corner of the screen, location 1024 now con-
trols the colors of the bits in that top left space.

Colors of squares in bit map mode do not come from color memory,
as they do in the character modes. Instead, colors are taken from
screen memory. The upper 4 bits of screen memory become the color of
any bit that is set to 1 in the 8 by 8 area controlled by that screen
memory location. The lower 4 bits become the color of any bit that is set
to a O.

EXAMPLE:Type the following:

5 BASE=2~4096:POKE53272,PEEK(53272)OR8:REM PUT BIT
MAP AT 8192
10 POKE53265,PEEK(53265)OR32:REM ENTER BIT MAP MODE

Now RUN the program.
Garbage appears on the screen, right? Just like the normal screen

mode, you have to clear the HIGH-RESOLUTION(HI-RES) screen before
you use it. Unfortunately, printing a CLRwon't work in this case. Instead
you have to clear out the section of memory that you're using for your
programmable characters. Hit the .:UIlr~"IIIJ:1and .:I~"IIII:I:IIkeys, then
add the following lines to your program to clear the HI-RES screen:

20 FORI=BASETOBASE+7999:POKEI,0:NEXT:REM CLEAR BIT
MAP
30 FORI=1024T02023:POKEI,3:NEXT:REM SET COLOR TO
C'T'At.~ Arm BLACK

Now RUN the program again. You should see the screen clearing, then
the greenish blue color, cyan, should cover the whole screen. What we
want to do now is to turn the dots on and off on the HI-RES screen.

PROGRAMMING GRAPHICS 123

To SET a dot (turn a dot ON) or UNSETa dot (turn a dot OFF) you must
know how to find the correct bit in the character memory that you have
to set to a 1. In other words, you have to find the character you need to
change, the row of the character, and which bit of the row that you
have to change. You need a formula to calculate this.

We will use X and Y to stand for the horizontal and vertical positions
of a dot. The dot where x=o and y=o is at the upper-left of the dis-
play. Dots to the right have higher X values, and the dots toward the
bottom have higher Y values. The best way to use bit mapping is to
arrange the bit map display something like this:

O__n___n_n_n___u_nn_n__nn___n_n_n__ X 000000_00__00_00_0000_0000_00_00_00_00___00 319

y

199 _nOnn_nnn___ __nn_n___nn_nn_n_nn___nn_n_n__nn nnn_nnnnnn_n___

Each dot will have an X and a Y coordinate. With this format it is easy
to control any dot on the screen.

124 PROGRAMMING GRAPHICS

However, what you actually have is something like this:

w ~

Zo
=;3
!l.0
OCr!1-- ~

BYTE 0

BYTE 1
BYTE 2.

BYTE 3
BYTE 4

BYTE 5_

BYTE 6
BYTE7

BYTE 8

BYTE 9

BYTE 10

BYTE 11
BYTE 12

BYTE 13

BYTE 14

BYTE 15

BYTE 16 BYTE 24BYTE 312

BYTE313
BYTE314
BYTE315
BYTE316
BYTE317
BYTE318
BYTE319

BYTE 320 BYTE 328 BYTE 336- BYTE 344BYTE 632

BYTE 321 BYTE 329 BYTE 633
BYTE 322 BYTE 330 BYTE 634
BYTE 323 BYTE 331 BYTE 635

BYTE 324 BYTE 332 BYTE 636

BYTE 325 BYTE 333 BYTE 637
BYTE 326 BYTE 334 BYTE 638

BYTE 327 BYTE 335 BYTE 639

°3
ZoOCr!
u~
w
(/)

The programmable characters which make up the bit map are ar-
ranged in 25 rows of 40 columns each. While this is a good method of
organization for text, it makes bit mapping somewhat difficult. (There is
a good reason for this method, See the section on MIXED MODES.)

The following formula will make it easier to control a dot on the bit
map screen:

The- start of the display memory area is known as the BASE. The row
number (from 0 to 24) of your dot is:

ROW = INT(Y/8) (There are 320 bytes per line.)

The character position on that line (from 0 to 39) is:

CHAR = INT(x/8) (There are 8 bytes per character.)

The line of that character position (from 0 to 7) is:

LINE = Y AND 7

PROGRAMMING GRAPHICS 125

The bit of that byte is:

BIT = 7-(X AND 7)

Now we put these formulas together. The byte in which character
memory dot (X,Y) is located is calculated by:

BYTE = BASE+ ROW*320+ CHAR*8+ LINE

To turn on any bit on the grid with coordinates (X,V), use this line:

POKE BYTE, P.EEK(BYTE) OR 2jBIT

Let's add these calculations to the program. In the following example,
the COMMODORE 64 will plot a sine curve:

5121 FOR:X:=0T0319STEP. 5: REr1 WAVE WILL FILL THE SCREE~I
60 Y=INTC9121+80:f.SINCX/1121»
7(1 CH= I tH C;";/8::-
8121 RO=INTC'T'/8::-
85 UI='r'AND7
90 B'T'=BASE +RO*32121+8*CH+L~1
1121121BI=7-C:X:AND7)
11121 POKEB'r'" PEEK CB'r' ::0OR 0:2 t:E: I ::-
12121 t'IE:":n~
125 POKE1024..16
13121 GOT0130

The calculation in line 60 will change the values for the sine function
from a range of + 1 to -1 to a range of 10 to 170. Lines 70 to 100
calculate the character, row, byte, and bit being affected, using the
formulae as shown above. Line 125 signals the program is finished by
changing the color of the top left corner of the screen. Line 130 freezes
the program by putting it into an infinite loop. When you have finished
looking at the display, just hold down .:m/'~"tI'I:Iand hit .'1:1.'11I1'1:11.

126 PROGRAMMING GRAPHICS

As a further example, you can modify the sine curve program to dis-
playa semicircle. Here are the lines to type to make the changes:

50 FORX=0T0160:REM DO HALF THE SCREEN
55 'T' 1 '" 1 iZII21+SC!F: (161?!,jo::x:-:;<::t.;:.::)

56 Y2=100-SQR(160:t.X-X*X)
60 FORY=Y1TOY2STEPY1-Y2
7121 CH= nn (:x:/:::)
80 RO=U-ITCT'/8)
85 .U'I='T'AND7

90 BY=BASE+RO*320+S:t.CH+LN
10tC1 E:I=7-C<:At'1Dn

1 H3 POKEB'T'., PEEK (B'T') OR (2 'T'BI)
114 ~IEXT

This will create a semicircle in the HI-RES area of the screen.

WARNING: BASIC variables can overlay your high-resolutionscreen. If you need

more memory spaceyou must move thebottomof BASIC above the high-resolution

screen area. Or, you must move your high-resolutionscreen area. Thisproblem will

NOT occur in machine language. ItONLY happens when you're writingprograms in
BASIC.

MULTI-COLORBIT MAP MODE

Like multi-color mode characters, multi-color bit map mode allows you
to display up to four different colors in each 8 by 8 section of bit map.
And as in multi-character mode, there is a sacrifice of horizontal resolu-
tion (from 320 dots to 160 dots).

Multi-color bit map mode uses an 8K section of memory for the bit
map. You select your colors for multi-color bit map mode from (1) the
background color register 0, (the screen background color), (2) the video
matrix (the upper 4 bits give one possible color, the lower 4 bits an-
other), and (3) color memory.

Multi-color bit mapped mode is turned ON by setting bit 5 of 53265
($D011) and bit 4 at location 53270 ($D016) to a 1. The following POKE
does this:

POKE 53265,PEEK(53625)OR 32: POKE 53270,PEEK(53270)OR 16

PROGRAMMING GRAPHICS 127

Multi-color bit mapped mode is turned OFF by setting bit 5 of 53265
($0011) and bit 4 at location 53270 ($0016) to a O. The following POKE
does this:

POKE 53265,PEEK(53265)AND 223: POKE 53270,PEEK(53270)AND 239

As in standard (HI-RES) bit mapped mode, there is a one to one cor-
respondence between the 8K section of memory being used for the dis-
play, and what is shown on the screen. However, the horizontal dots are
two bits wide. Each 2 bits in the display memory area form a dot, which
can have one of 4 colors.

BITS
00
01
10
11

COLOR INFORMATION COMES FROM

Background color #0 (screen color)
Upper 4 bits of screen memory
lower 4 bits of screen memory
Color nybble (nybble = 1/2 byte = 4 bits)

SMOOTH SCROLLING

The VIC-II chip supports smooth scrolling in both the horizontal and
vertical directions. Smooth scrolling is a one pixel movement of the
entire screen in one direction. It can move either up, or down, or left, or
right. It is used to move new information smoothly onto the screen, while
smoothly removirlg characters from the other side.

While the VIC-II chip does much of the task for you, the actual scroll-
ing must be done by a machine language program. The VIC-II chip
features the ability to place the video screen in any of 8 horizontal posi-
tions, and 8 vertical positions. Positioning is controlled by the VIC-II
scrolling registers. The VIC-II chip also has a 38 column mode, and a 24

row mode. the smaller screen sizes are used to give you a place for your
new data to scroll on from.

The following are the steps for SMOOTH SCROLLING:

128 PROGRAMMINGGRAPHICS

1) Shrink the screen (the border will expand).

2) Set the scrolling register to maximum (or minimum value depend-
ing upon the direction of your scroll).

3) Place the new data on the proper (covered) portion of the screen.
4) Increment (or decrement) the scrolling register until it reaches the

maximum (or minimum) value.

5) At this point, use your machine language routine to shift the entire
screen one entire character in the direction of the scroll.

6) Go back to step 2.

To go into 38 column mode, bit 3 of location 53270 ($D016) must be
set to a O. The following POKE does this:

POKE 53270,PEEK(53270)AND 247

To return to 40 column mode, set bit 3 of location 53270 ($D016) to a
1. The following POKE does this:

POKE 53270,PEEK(53270)OR 8

To go into 24 row mode, bit 3 of location 53265 ($D011) must be set to
a O. The following POKE will do this:

POKE 53265,PEEK(53265)AND 247

To return to 25 row mode, set bit 3 of location 53265 ($DOll) to a 1.
The following POKE does this:

POKE 53265,PEEK(53265)OR 8

Whe, scrolling in the X direction, it is necessary to place "the VIC-II
chip into 38 column mode. This gives new data a place to scroll from.
When scrolling LEFT,the new data should be placed on the right. When
scrolling RIGHT the new data should be placed on the left. Please note
that there are still 40 columns to screen memory, but only 38 are visible.

When scrolling in the Ydirection, it is necessary to place the VIC-II chip
into 24 row mode. When scrolling UP, place the new data in the LAST
row. When scrolling DOWN, place the new data on the FIRSTrow. Un-
like X scrolling, where there are covered areas on each side of the

screen, there is only one covered area in Y scrolling. When the Y scroll-

PROGRAMMINGGRAPHICS 129

ing register is set to 0, the first line is covered, ready for new data.
When the Y scrolling register is set to 7 the last row is covered.

For scrolling in the X direction, the scroll register is located in bits 2 to
o of the VIC-II control register at location 53270 ($DOI6 in HEX). As
always, it is important to affect only those bits. The following POKEdoes
this:

POKE 53270, (PEEK(53270)AND 248)+X

where X is the X position of the screen from 0 to 7.
For scrolling in the Y direction, the scroll register is located in bits 2 to

o of the VIC-II control register at location 53265 ($DOII in HEX). As
always, it is important to affect only those bits. The following POKEdoes
this:

POKE 53265, (PEEK(53265)AND 248)+Y

where Y is the Y position of the screen from 0 to 7.
To scroll text onto the screen from the bottom, you would step the

low-order 3 bits of location 53265 from 0-7, put more data on the
covered line at the bottom of the screen, and then repeat the process.
To scroll characters onto the screen from left to right, you would step the
low-order 3 bits of location 53270 from 0 to 7, print or POKE another
column of new data into column 0 of the screen, then repeat the pro-
cess.

If you step the scroll bits by -I, your text will move in the opposite
direction.

EXAMPLE:Text scrolling onto the bottom of the screen:

10 POKE53265,PEEK(53265)AND247
INTO 24 ROW MODE
2121PRINTCHR$(147)
CLEAR THE SCREEN
30 FORX=lT024:PRINTCHR$(17); :NEXT
THE CURSOR TO THE BOTTOM
40 POKE53265,(PEEK(53265)AND248)+7:PRINT
POSITION FOR 1ST SCROLL
5121 PRItHII HELLOII;
6121FORP=6T00STEP-1
70 POKE53265,(PEEK(53265>AND24S)+P
8121FORX=lT050:NEXT :REM
DELAo,.' LOOP

910 t~E:>o:T:GOT041O

:REM GO

:REM

:REM MOVE

:REr1

130 PROGRAMMING GRAPHICS

SPRITES

A SPRITE is a special type of user definable character which can be

displayed anywhere on the screen. Sprites are maintained directly by
the VIC-II chip. And all you have to do is tell a sprite "what to look like,"
"what color to be," and "where to appear." The V/C-II chip will do the
rest! Sprites can be any of the 16 colors available.

Sprites can be used with ANY of the other graphics modes, bit
":lapped, character, multi-color, etc., and they'll keep their shape in all
of them. The sprite carries its own color definition, its own mode (HI-RES
or multi-colored), and its own shape.

Up to 8 sprites at a time can be maintained by the VIC-II chip auto-
matically. More sprites can be displayed using RASTER INTERRUPT
techniques.

The features of SPRITESinclude:

1) 24 horizontal dot by 21 vertical dot size.
2) Individual color control for each sprite.
3) Sprite multi-color mode.
4) Magnification (2X) in horizontal, vertical, or both directions.
5) Selectable sprite to background priority.
6) Fixed sprite to sprite priorities.
7) Sprite to sprite collision detection.
8) Sprite to background collision detection.

These special sprite abilities make it simple to program many arcade
style games. Because the sprites are maintained by hardware, it is even
possible to write a good quality game in BASIC!

Th(r.3 are 8 sprites supported directly by the VIC-II chip. They are
numbered from 0 to 7. Each of the sprites has it own definition location,
position registers and color register, and has its own bits for enable and
collision detection.

DEFINING A SPRITE

Sprites are defined like programmable characters are defined. How-
ever, since the size of the sprite is larger, more bytes are needed. A
sprite is 24 by 21 dots, or 504 dots. This works out to 63 bytes (504/8

PROGRAMMINGGRAPHICS 131

-Co)

..,
""
0
0

Z "'II0 10.
0 c

iiJ..,
Co)J:n .
to.)en .
VI"U
...
:;:
CD
C
CD
:!)

:;:
ir
D:J

0-n

COLUMN 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23NUMBER

BIT 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

BITDATA
VALUES 128 64 32 16 8 4 2 1 128 64 32 16 8 4 2 1 128 64 32 16 8 4 2 1
(ON .dxVAL)

ROW0

ROW1

ROW2

ROW3

ROW4

ROW5

ROW6

ROW7

ROW8

ROW9

ROW10

ROW11

ROW12

ROW13

ROW14

ROW15

ROW16

ROW17

ROW18
ROW19

ROW20

bits) needed to define a sprite. The 63 bytes are arranged in 21 rows of
3 bytes each. A sprite definition looks like this:

BYTE0
BYTE3
BYTE6

BYTE1
BYTE4
BYTE7

BYTE2
BYTE5
BYTE8

BYTE 60 BYTE 61 BYTE 62

Another way to view how a sprite is created is to take a look at the

sprite definition block on the bit level. It would look something like Figure
3-2.

In a standard (HI~RES)sprite, each bit set to 1 is displayed in that
sprite's foreground color. Each bit set to 0 is transparent and will display
whatever data is behind it. This is similar to a standard character.

Multi-color sprites are similar to multi-color characters. Horizontal

resolution is traded for extra color resolution. The resolution of the sprite
becomes 12 horizontal dots by 21 vertical dots. Each dot in the sprite
becomes twice as wide, but the number of colors displayable in the
sprite is increased to 4.

SPRITE POINTERS

Even though each sprite takes only 63 bytes to define, one more byte
is needed as a place holder at the end of each sprite. Each sprite, then,
takes up 64 bytes. This makes it easy to calculate where in memory your
sprite definition is, since 64 bytes is an even number and in binary it's an
even power.

EC'ch of the 8 sprites has a byte associated with it called the SPRITE
POINTER.The sprite pointers control where each sprite definition is lo-
cated in memory. These 8 bytes are always located as the last 8 bytes
of the 1K chunk of screen memory. Normally, on the Commodore 64,
this means they begin at location 2040 ($07F8 in HEX). However, if you
move the screen, the location of your sprite pointers will also move.

Each sprite pointer can hold a number from 0 to 255. This number
points to the definition for that sprite. Since each sprite definition takes
64 bytes, that means that the pointer can "see" anywhere in the 16K
block of memory that the VIC-II chip can access (since 256*64= 16K).

PROGRAMMING GRAPHICS 133

If sprite pointer #0, at location 2040, contains the number 14, for
example, this means that sprite 0 will be displayed using the 64 bytes
beginning at location 14*64 = 896 which is in the cassette buffer. The
following formula makes this clear:

LOCATION = (BANK * 16384) + (SPRITEPOINTER VALUE* 64)

Where BANK is the 16K segment of memory that the VIC-II chip is look-
ing at and is fr~m 0 to 3.

The above formula gives the start of the 64 bytes of the sprite
definition block.

When the VIC-II chip is looking at BANK0 or BANK 2, there is a ROM
IMAGE of the character set present in certain locations, as mentioned
before. Sprite definitions can NOT be placed there. If for some reason
you need more than 128 different sprite definitions, you should use one
of the banks without the ROM IMAGE, 1 or 3.

TURNING SPRITES ON

The VIC-II control register at location 53269 ($D015 in HEX) is known

as the SPRITE ENABLE register. Each of the sprites has a bit in this
register which controls whether that sprite is ON or OFF. The register
looks like this:

$D015 7 6 5 4 3 2 1 0

To turn on sprite 1, for example, it is necessary to turn that bit to a I.
The following POKE does this:

POKE 53269,PEEK(53269)OR 2

A more general statement would be the following:

POKE 53269,PEEK(53269}OR (2tSN)

where SN is the sprite number, from 0 to 7.

NOTE: A sprite must be turned ON before it con be seen.

134 'PROGRAMMING GRAPHICS

TURNING SPRITES OFF

A sprite is turned off by setting its bit in the VIC-lIcontrol register at
53269 ($0015 in HEX) to a O. The following POKE will do this:

POKE 53269, PEEK(53269)AND (255-2jSN)

where SN is the sprite number from 0 to 7.

COLORS

A sprite can be any of the 16 colors generated by the VIC-II chip.
Each of the sprites has its own sprite color register. These are the mem-
ory locations of the color registers:

53287
53288

53289
53290

53291
53292

53293
53294

ADDRESS

($0027)

($0028)

($0029)

($002A)

($0026)

($002C)

($0020)

($002E)

DESCRIPTION

SPRITE 0 COLOR REGISTER

SPRITE 1 COLOR REGISTER

SPRITE 2 COLOR REGISTER
SPRITE 3 COLOR REGISTER

SPRITE 4 COLOR REGISTER

SPRITE 5 COLOR REGISTER

SPRITE 6 COLOR REGISTER

SPRITE 7 COLOR REGISTER

All dots in the sprite will be displayed in the color contained in the
sprite color register. The rest of the sprite will be transparent, and will
show whatever is behind the sprite.

MULTI-COLOR MODE

Multi-color mode allows you to have up to 4 different colors in each
sprite. However, just like other multi-color modes, horizontal resolution is
cut in half. In other words, when you're working with sprite multi-color
mode (like in multi-color character mode), instead of 24 dots across the
sprite, there are 12 pairs of dots. Each pair of dots is called a BIT PAIR.
Think of each bit pair (pair of dots) as a single dot in your overall sprite
when it comes to choosing colors for the dots in your sprites. The table

PROGRAMMING GRAPHICS 135

below gives you the bit pair values needed to turn ON each of the four
colors you've chosen for your sprite:

BIT PAIR DESCRIPTION

00 TRANSPARENT,SCREEN COLOR
01 SPRITE MULTI-COLORREGISTER#0 (53285) ($D025)
10 SPRITE COLOR REGISTER

11 SPRITEMULTI-COLORREGISTER#1 (53286) ($D026)

NOTE: The sprite foreground color is a 10. The character foreground is a 11.

SEnlNG A SPRITE TO MULTI-COLORMODE

To switch a sprite into multi-color mode you must turn ON the VIC-II
control register at location 53276 ($D01C). The following POKEdoes this:

POKE 53276,PEEK(53276) OR (2tSN)

where SN is the sprite number (O to 7).
To switch a sprite out of multi-color mode you must turn OFF the VIC-II

control register at location 53276 ($D01C). The following POKEdoes this:

POKE 53276,PEEK(53276) AND (255-2tSN)

where SN is the sprite number (O to 7).

EXPANDED SPRITES

The VIC-II chip has the ability to expand a sprite in the vertical direc-
tion, the horizontal direction, or both at once. When expanded, each dot
in the sprite is twice as wide or twice as tall. Resolution doesn't actually
increase. . . the sprite just gets bigger.

To expand a sprite in the horizontal direction, the corresponding bit in
the VIC-IIcontrol register at location 53277 ($D01D in HEX)must be
turned ON (set to a 1). The following POKEexpands a sprite in the X
direction:

POKE 53277,PEEK(53277)OR (2tSN)

where SN is the sprite number from 0 to 7.

136 PROGRAMMING GRAPHICS

To unexpand a sprite in the horizontal direction, the corresponding bit
in the VIC-II control register at location 53277 ($DOID in HEX) must be
turned OFF (set to a 0). The following POKE "unexpands" a sprite in the
X direction:

POKE 53277,PEEK(53277)AND (255-2tSN)

where SN is the sprite number from 0 to 7.

To expand a sprite in the vertical direction, the corresponding bit in
the VIC-II control register at location 53271 ($DOI7 in HEX) must be
turned ON (set to a 1). The following POKE expands a sprite in the Y
direction:

POKE 53271, PEEK{53271)OR (2tSN)

where SN is the sprite number from 0 to 7.

To unexpand a sprite in the vertical direction, the corresponding bit in
the VIC-II control register at location 53271 ($DOI7 in HEX) must be
turned OFF (set to a 0). The following POKE "unexpands" a sprite in the
Y direction:

POKE 53271,PEEK(53271)AND (255-2tSN)

where SN is the sprite number from 0 to 7.

SPRITE POSITIONING

Once you've made a sprite you want to be able to move it around the
screen. To do this, your Commodore 64 uses three positioning registers:

1) SPRITE X POSITION REGISTER

2) SPRITE Y POSITION REGISTER

3) MOST SIGNIFICANT BIT X POSITION REGISTER

Each sprite has an X position register, a Y position register, and a bit
in the X most significant bit register. This lets you position your sprites
very accurately. You can place your sprite in 512 possible X positions
and 256 possible Y positions.

The X and Y position registers work together, in pairs, as a team. The
locatkms of the X and Y registers appear in the memory map as follows:
First is the X register for sprite 0, then the Y register for sprite O. Next

PROGRAMMINGGRAPHICS 137

comes the X register for sprite 1, the Y register for sprite 1, and so on.
After all 16 X and Y registers comes the most significant bit in the X
position (X MSB) located in its own register.

The chart below lists the locations of each sprite position register. You

use the locations at their appropriate time through POKEstatements:

The position of a sprite is calculated from the TOP LEFTcorner of the

24 dot by 21 dot area that your sprite can be designed in. It does NOT
matter how many or how few dots you use to make up a sprite. Even if
only one dot is used as a sprite, and you happen to want it in the middle

of the screen, you must still calculate the exact positioning by starting at
the top left corner location.

VERTICAL POSITIONING

Setting up positions in the horizontal direction is a little more difficult

than vertical positioning, so we'll discuss vertical (Y) positioning first.

There are 200 different dot positions that can be individually pro-

grammed onto your TV screen in the Y direction. The sprite Y position

registers can handle numbers up to 255. This means that you have more

138 PROGRAMMINGGRAPHICS

LOCATION
DESCRIPTION

DECIMAL HEX

53248 ($DOOO) SPRITE 0 X POSITION REGISTER

53249 ($DOOI) SPRITE 0 Y POSITION REGISTER

53250 ($D002) SPRITE 1 X POSITION REGISTER

53251 ($D003) SPRITE 1 Y POSITION REGISTER

53252 ($D004) SPRITE 2 X POSITION REGISTER

53253 ($D005) SPRITE 2 Y POSITION REGISTER

53254 ($D006) SPRITE 3 X POSITION REGISTER

53255 ($D007) SPRITE 3 Y POSITION REGISTER

53256 ($D008) SPRITE 4 X POSITION REGISTER

53257 ($D009) SPRITE 4 Y POSITION REGISTER
53258 ($DOOA) SPRITE 5 X POSITION REGISTER
53259 ($DOOB) SPRITE 5 Y POSITION REGISTER

53260 ($DOOC) SPRITE 6 X POSITION REGISTER

53261 ($DOOD) SPRITE 6 Y POSITION REGISTER

53262 ($DOOE) SPRITE 7 X POSITION REGISTER

53263 ($DOOF) SPRITE 7 Y POSITION REGISTER

53264 ($D010) SPRITE X MSB REGISTER

than enough register locations to handle moving a sprite up and down.
You also want to be able to smoothly move a sprite on and off the
screen. More than 200 values are needed for this.

The first on-screen value from the top of the screen, and in the Y
direction for an unexpanded sprite is 30. For a sprite expanded in the Y
direction it would be 9. (Since each dot is twice as tall, this makes a
certain amount of sense, as the initial position is STILLcalculated from
the top left corner of the sprite.)

The first Y value in which a sprite (expanded or not) is fully on the
screen (all 21 possible lines displayed) is 50.

The last Y value in which an unexpanded sprite is fully on the screen is
229. The last Y value in which an expanded sprite is fully on the screen
is 208.

The first Y value in which a sprite is fully off the screen is 250.

EXAMPLE:

---mD~
1121PRnn":T - : REt'1 CLEAF.: SCF.:EEt,1
20 POKE2040 , 13 :REM GET SPRITE 0
DATA FROM BLOCK 13
30 FORI=OT062:POKE832+I,129'NEXT:REM POKE SPRITE
DATA INTO BLOCK 13 (13*64=832)
40 V=53248 :REM SET BEGINNING
OF VIDEO CHIP
5121POKEV+21" 1 : F.'Et1 EI"IABLE ~;PRITE
1
60 pm~E""'+:39., 1
COLOR
71<:1POKE '+ 1 " 11210
'T' POSITIO~I
80 POKEV+16,0:POKEV,100
>': POSITION

:REM SET SPRITE (1

:REM SET SPRITE 0

:REM SET SPRITE 121

HORIZONTAL POSITIONING

Positioning in the horizontal direction is more complicated because
there are more than 256 positions. This means that an extra bit, or 9th
bit is used to control the X position. By adding the extra bit when neces-
sary a sprite now has 512 possible positions in the left/right, X, direc-
tion. This makes more possible combinations than can be seen on the
visible part of the screen. Each sprite can have a position from 0 to 511.

However, only those values between 24 and 343 are visible on the
screen. If the X position of a sprite is greater than 255 (on the right side
of the screen), the bit in the X MOST SIGNIFICANTBITPOSITION register
must be set to a 1 (turned ON). If the X position of a sprite is less than

PROGRAMMINGGRAPHICS 139

-
".
o

...'"
o

~
Z
C>
C>
~...
:rn
C/I

'ft

cO.
e
;
Co)
I
Co)

en
"U
...
:;:
CD

o (SOO) 24 (S18)
I I
I I
I I
I I

29 (S1D) -- - L _II
50 (S32) ___I

208 ($DO)-

250 (SFA)-I
I
I
I
I
I

488 (S1E8)

I
I
I

24 (S18)

VISIBLEVIEWING AREA

NTSC'
40 COLUMNS
25 ROWS

.North American televisiontransmissionstandardsfor your home TV.

296 (S128)
I
I
I

344 ($158)
I
I

1 8 ($08)

I
I
I
I

320 (S140)

-- 50 ($32)

-- - 229 ($E5)

-- - 250 ($FA)

I
1
I
I

344 (S158)

~
II>
:;:cr
~:r
co
n
:s-
a
::I-
!II

"'"
o
G')
~
~z
G')

G')

~"
J:n
VI

~

7 ($07) 31 ($1F)
I I
I I
I 1
I I
I 1

33 ($211 __ - _1__1I

54 ($36) I

204 ($CCI- -

246 ($F6)- -,
I
I
I
I
I
I

480 ($1EO)

1
31 ($1F)

VISIBLE VIEWING AREA

NTSC.
38 COLUMNS
24 ROWS

.North American television transmission standards for your home TV.

287 ($11FI
I
1
1
1

335 ($14FI
I
I
1

, 1- _ _ _ _ _ _ 12 ($OC)

- - 54($36)

- ---225 ($E1)

- - - -246 I$F6)

1
I
I
1
1

311 ($137)

I
I
I
I
I
I

335 ($14FI

256 (on the left side of the screen), then the X MSB of that sprite must
be 0 (turned OFF). Bits 0 to 7 of the X MSB register correspond to sprites
o to 7, respectively.

The following program moves a sprite across the screen:

EXAMPLE:

--IDIIiI"
10 PF.:It-IT"::T'-
20 F'OKE2040.13
30 FORI=0T062:POKE832+I.129:NEXT
40 ..,.=5:324:3
50 POKE'.'!+21,. 1
6121POKE"'!+3S<..1
70 POKEV+ 1 " 1121(1
8121FOF(J=!3TOcH7
90 HX=INTeJ/256)'LX=J-256*HX
100 POKEV.LX:POKEV+16.HX:NE~T

When moving expanded sprites onto the left side of the screen in the
X direction, you have to start the sprite OFFSCREENon the RIGHTSIDE.
Thisis because an expanded sprite is larger than the amount of space
available on the left side of the screen.

EXAMPLE:

,ABI"
1121pF.:nn":J"
2(1 F'OKE2!~140. 13
30 FORI=0T062:POKE832+I.129:NEXT
4121 \.':=::5::':248
50 POKE','!+21" 1
60 POKEV+39.1:POKEV+23.1:POKEV+29.1
70 POKE'.,!+1 . 10(~
:3121J~48:::
90 HX=INTeJ/256):LX=J-256*HX
100 POKEV,LX:POKEV+16.HX
110 J=J+l:IFJ)511THENJ=0
120 IFJ)4880RJ<348GOT090

The charts in Figure 3-3 explain sprite positioning.

By using these values, you can position each sprite anywhere. By mov-
ing the sprite a single dot position at a time, very smooth movement is
easy to achieve.

142 PROGRAMMING GRAPHICS

SPRITE POSITIONING SUMMARY

Unexpanded sprites are at least partially visible in the 40 column, by
25 row mode within the following parameters:

1 < = X < = 343

30 < = y < = 249

In the 38 column mode, the X parameters change to the following:

8 < = X < = 334

In the 24 row mode, the Y parameters change to the following:

34 < = Y < = 245

Expanded sprites are at least partially visible in the 40 column, by 25
row mode within the following parameters:

489 > = X < = 343

9 > = Y < = 249

In the 38 column mode, the X parameters change to the following:

1496> = X < = 334

In the 24 row mode, the Y parameters change to the following:

13 < = Y < = 245

PROGRAMMING GRAPHICS 143

SPRITE DISPLAY PRIORITIES

Sprites have-the ability to cross each other's paths, as well as cross in
front of, or behind other objects on the screen. This can give you a truly
three dimensional effect for games.

Sprite to sprite priority is fixed. That means that sprite 0 has the high-
est priority, sprite 1 has the next priority, and so on, until we get to
sprite 7, which has the lowest priority. In other words, if sprite 1 and
sprite 6 are positioned so that they cross each other, sprite 1 will be in
front of sprite 6.

So when you're planning which sprites will appear to be in the fore-
ground of the picture, they must be assigned lower sprite numbers than
those sprites you want to put towards the back of the scene. Those
sprites will be given higher sprite numbers.

NOTE: A "window" effect is possible. If a sprite with higher priority has "holes" in it
(areas where the dots are not set to 1 and thus turned ON), the sprite- with the lower

priority will show through. This also happens with sprite and background data.

Sprite to background priority is controllable by the SPRITE-BACK-
GROUND priority register located at 53275 ($DOIB). Each sprite has a
bit in this register. If that bit is 0, that sprite has a higher priority than
the background on the screen. In other words, the sprite appears in
front of background data. If that bit is aI, that sprite has a lower
priority than the background. Then the sprite appears behind the back-
ground data.

COLLISION DETECTS

One of the more interesting aspects of the VIC-II chip is its collision
detection abilities. Collisions can be detected between sprites, or be-
tween sprites and background data. A collision occurs when a non-zero
part of a sprite overlaps a non-zero portion of another sprite or char-
acters on the screen.

144 PROGRAMMINGGRAPHICS

SPRITE TO SPRITE COLLISIONS

Sprite to sprite collisions are recognized by the computer, or flagged,
in the spite to sprite collision register at location 53278 ($DOlE in HEX) in
the VIC-II chip control register. Each sprite has a bit in this register. If
that bit is a 1, then that sprite is involved in a collision. The bits in this
register will remain set until read (PEEKed). Once read, the register is
automatically cleared, so it is a good idea to save the value in a vari-
able until you are finished with it.

NOTE: Collisions can take place even when the sprites are off screen.

SPRITE TO DATA COLLISIONS

Sprite to data collisions are detected in the sprite to data collision
register at location 53279 ($DOlF in HEX)of the VIC-II chip control regis-
ter.

Each sprite has a bit in this register. If that bit is a 1, then that sprite
is involved in a collision. The bits in this register remain set until read
(PEEKed). Once read, the register is automatically cleared, so it is a
good idea to save the value in a variable until you are finished with it.

NOTE: MULTI-COLORdata 01 is considered transparent for collisions, even though it

shows up on the screen. When setting up a background screen, it is a good idea to
make everything that should not cause a collision 01 in multi-color mode.

PROGRAMMING GRAPHICS 145

10 REM SPRITE EXAMPLE 1...
20 REM THE HOT AIR BALLOON
30 VIC=13~4096:REM THIS IS WHERE THE VIC REGISTERS
BEGIN
35 POKEVIC+21,1:REM ENABLE SPRITE 0
36 POKEVIC+33, 14:REM SET BACKGROUND COLOR TO LIGHT
BLUE
37 POKEVIC+23,1:REM EXPAND SPRITE 0 IN Y
38 POKEVIC+29,1:REM EXPAND SPRITE 0 IN X
40 POKE2040 ,192:REM SET SPRITE 0~S POINTER
180 POKEVIC+0,100:REM SET SPRITE 0~S X POSITION
190 POKEVIC+l, 100:REM SET SPRITE 0~S Y POSITION
220 POKEVIC+39,1:REM SET SPRITE 0~S COLOR
250 FORY=0T063:REM BYTE COUNTER WITH SPRITE LOOP
300 READA:REM READ IN A BYTE
310 POKE192*64+Y,A:REM STORE THE DATA IN SPRITE
AREA
320 I~EXT'T':REM CLOSE LOOP
330 DX=l:DY=l
340 X=PEEK(VIC):REM LOOK AT SPRITE 0~S X POSITION
350 Y=PEEK(VIC+l):REM LOOK AT SPRITE 0~S Y POSITION
360 IFY=500RY=208THENDY=-DY:REM IF Y IS ON THE
EDGE OF THE....
370 REt1 SCREEN, THEt~ REVERSE DELTA Y
380 IFX=24AND(PEEK(VIC+16)AND1)=0THENDX=-DX:REM IF
SPRITE IS....
390 REM TOUCHIt~GTHE LEFT EDGE (>::=24 At~DTHE MSB
FOR SPRITE 0 IS 0), REVERSE IT
400 IFX=40AND(PEEK(VIC+16)AND1)=lTHENDX=-DX:REM IF
SPRITE IS....
410 REI1 TOUCHI.NG THE RIGHT EDGE (X=40 AND THE t1SB
FOR SPRITE 0 IS 1), REVERSE IT
420IFX=255ANDDX=lTHENX=-1:SIDE=1
430 REM SWITCH TO OTHER SIDE OF THE SCREEN
440 IFX=0ANDDX=-lTHENX=256:SIDE=0
450 REM SWITCH TO OTHER SIDE OF THE SCREEN
460 X=X+DX:REM ADD DELTA X TO X
470 X=XAND255:REM MAKE SURE X IS IN ALLOWED RANOE
480 Y=Y+DY:REM ADD DELTA Y TO Y
485 POKEVIC+16,SIDE
490 POKEVIC,X:REM PUT NEW X VALUE INTO SPRITE 0~S
X POSITION
510 POKEVIC+1,Y:REM PUT NEW Y VALUE INTO SPRITE
0~S 'iPOSITION
530 OOT0340
600 REM ***** SPRITE DATA *****
610 DATA0,127,0,1,255,192,3,255,224,3,231,224
620 DATA7,217,240,7,223,240,7,217,240,3,231,224
630 DATA3,255,224,3,255,224,2,255,160, 1,127,64
640 DATAl,62,64,0,156,128,e,156,128,0,73,a,a,73,a
650 DATA0,62,0,0,62,0,0,62,0,0,28,a,0

146 PROGRAMMING GRAPHICS

10 REt'l SPRITE E:":AMPLE 2...
20 REM THE HOT AIR BALLOON AGAIN
30 VIC=13*4096:REM THIS IS WHERE THE VIC REGISTERS
BEGIN
35 POKEVIC+21,63:REM ENABLE SPRITES 0 THRU 5
36 POKE"I IC+33., 14 :REM SET BACKGROUt.jD COLOR TO LIGHT
:BLUE
37 POKE"lIC+23.,:3: REf'l E:";PAND SPRITES 0 AND 1 IN 'T'
38 POKEY IC+29., 3 : REt1 E>::PAt~D SPR IrES 0 AND 1 HI X
40 POKE2040, 192:REM SET SPRITE 0~S POINTER
50 POKE2041 ,193:REM SET SPRITE l~S POINTER
60 POKE2042, 192:REM SET SPRITE 2~S POINTER
70 POKE2043, 193:REM SET SPRITE 3~S POINTER
80 POKE2044.. 192:REM SET SPRITE 4~S POINTER
90 POKE2045, 193:REM SET SPRITE 5~S POINTER
100 POKEVIC+4,30:REM SET SPRITE 2~S X POSITION
110 POKEY I C+5, 58 :REM SET SPR ITE 2 ~ S ',JPOS ITI ON

120 POKEVIC+6,65:REM SET SPRITE 3~S X POSITION
130 POKEVIC+7,58:REM SET SPRITE 3'S Y POSITION
140 POKEVIC+8, 100:REM SET SPRITE 4~S X POSITION
150 POKEVIC+9,58:REM SET SPRITE 4~S Y POSITION
160 POKEVIC+10, 100:REM SET SPRITE 5'S X POSITION
17(1 POKE..,.IC+ 11 , 58 :REM SET SPR IrE 5' S Y POS IT IO~!

J81J
175 PRINT" i:(']"TAB(15) "THIS IS TWO HIRES SPRITES".;

'mil"
176 PR HITTAB (55) "Ot.!TOP OF EACH OTHER"
180 POKEVIC+0,100:REM SET SPRITE 0~S X POSITION
190 POKEVIC+1, 100:REM SET SPRITE 0'S Y POSITION
200 POKEVIC+2, 100:REM SET SPRITE l'S X POSITION
210 POKEVIC+3, 100:REM SET SPRITE l~S Y POSITION
220 POKEVIC+39,1:REM SET SPRITE 0'S COLOR
230 POKEVIC+41,1:REM SET SPRITE 2~S COLOR
240 POKEVIC+43,1:REM SET SPRITE 4'S COLOR
.250 POKEV IC+40., 6 :REt1 SET SPFU TE l' S COLOF.:

260 POKEVIC+42,6:REM SET SPRITE 3'S COLOR
270 POKEVIC+44,6:REM SET SPRITE 5'S COLOR
280 FORX=192T0193:REM THE START OF THE LOOP THAT
DEFINES THE SPRITES
290 FORY=0T063:REM BYTE COUNTER WITH SPRITE LOOP
300 READA:REMREAD IN A BYTE
:310 POKE~<::+:64+Y,A :F.:E~1STORE THE DATA It-! SPR ITE AREFI
320 NEXTY,X:REM CLOSE LOOPS
330 D>::= 1 :DY= 1

340 X=PEEK(VIC):REM LOOK AT SPRITE 0~S X POSITION
350 Y=PEEK(VIC+l):REM LOOK AT SPRITE 0'S Y POSITION
360 IF'T'=500RY=208THEND'r'=-DY: REt1 IF 'T' IS ON THE

EDGE OF THE...
370 REM SCREEN, THEN REVERSE DELTA Y
380 IFX=24AND(PEEK(VIC+16)AND1)=0THENDX=-DX:REMIF
SPRITE IS...
390 REM TOUCHING THE LEFT EDGE, THEN REVERSE IT

PROGRAMMING GRAPHICS 147

400 I FK=40FH.m 0::PEEK 0::I.,.'I C+ 16) At.m 1) =1THE~m>,;=- Dr.:: REt1 IF
SPRITE IS...
410 REM TOUCHING THE RIGHT EDGE, THEN REVERSE IT
420 IFX=255ANDDX=1THENX=-1:SIDE=3
43(1 REt1 SJ..JITCH TO OTHER S I DE OF THE SCREEN
440 IF:.:=0At.mm':=-1 THEN:X:=256: SIDE=0
450 REM SWITCH TO OTHER SIDE OF THE SCREEN
460 :.:=:.:+m,:: REt1 ADD DELTA ::-::TO :.:
470 X=XAND255:REM MAKE SURE X IS IN ALLOWED RANGE
480 Y=Y+DY:REM ADD DELTA Y TO Y
485 POKEVIC+16,SIDE
490 POKEVIC,X:REM PUT NEW X VALUE INTO SPRITE O'S
?~ POSITIm~
500 POKEVIC+2, >:::REt1 PUT ~~EW:x: I'..'ALUE uno SPRITE
1 ':3 :.: POS IT ION
510 POKEVIC+l.Y:REM PUT NEW Y VALUE INTO SPRITE
O'S Y POSITIO~~
520 POKEV!C+3,Y:REM PUT NEW Y VALUE INTO SPRITE
1'S 'r POSITIO~~
530 GOT0340
600 REM ***** SPRITE DATA *****
610 DATA0,255,0,3,153,192,7,24,224,7,56,224,14, 126,
112,14,126,112,14,126,112
620 DATA6, 126,96,7,56,224,7,56,224,i,56,128,O,153,
0,0,90, (I, 0, 56.. °
6313 DATAO,56,0,0,0,O,O,O,O,O,12G,e,e,42,e,0,84,e,o,
413..0,0
640 DATAo,e,O,0,102,0,0,231,0,0,195,0,i,129,128,1,
129,128,1,129,128
650 DATA1,12~,128,0,195,O,0,195,0,4,195,32,2,102,
64,2,36,64,1,0,128
660 DATA1,0,128,0,153,O,O,153,O,O,0,O,0,84,0,O,42,
O,O,20,O,O

10 REt1 SPR ITE EXAMPLE3...
213 REM THE HOT AIR GORF
30 VIC=53248:REM THIS IS WHERE THE VIC REGISTERS
BEGIN
35 POKEVIC+21,1: REME~IABLESPRITE 0

148 PROGRAMMING GRAPHICS

36 POKEVIC+33, 14:REM SET BACKGROUND COLOR TO LIGHT
B..LUE
37 POKEVIC+23,1:REM EXPAND SPRITE 121IN ~
38 POKE~IC+29,1:REM EXPAND SPRITE 121IN X
40 POKE2€140, 192:REM SET SPRITE 0'8 PO HnEI':
5121 F'OKEVIC+28, 1:REt1 TURN O~j MULTICOLOR
60 POKEVIC+37,7:REM SET MULTICOLOR 121
7121POKEVIC+38,4:REM SET MULTICOLOR 1
180 POKEVIC+I2I, 1121121:REM SET SPRITE e's X POSITION
19121POKEVIC+1., 112110:REM SET SPRITE et'S 'T'POSITION
22121 F'OKEVIC+39.. 2: REt1 SET SPRITE I2I'SCOLOR
2910 FORY=etT063:REM BYTE COUNTER WITH SPRITE LOOP
3121121 READA:REM READ IN A BYTE
31121POKE12288+Y,A:REM STORE THE DATA IN SPRITE AREA
32121 NEXT Y:REM CLOSE LOOP
33121 D;:<:= 1 :DY= 1

34121 X=PEEK(VIC):REM LOOK AT SPRITE I2I'SX POSITION
35121Y=PEEK(VIC+1):REM LOOK AT SPRITE IZI'S~ POSITION
36121IFY=500RY=21Z18THENDY=-DY:REM IF Y IS ON THE
EDGE OF THE...
87121REM SCREEN, THEN REVERSE DELTA Y
38121 IF X=24AND(PEEK(,.lIC+16)At~D1)=0THEI.m:x;=-D:x:: REt"1

IF SPRITE IS...
39121REM TOUCHING THE LEFT EDGE, THEN REVERSE IT
4121121IFX=40AND(PEEK(VIC+16)AND1)=1THENDX=-DX:REM IF
SPRITE IS...
41121REM TOUCHING THE RIGHT EDGE, THEN REVERSE IT
42€1 I F;:':=255A~mDX= 1THE~jX=-1 :S I DE= 1

43121REM SWITCH TO OTHER SIDE OF THE SCREEN
44121 IFX=I2IANDDX=-1THENX=256:SIDE=1ZI
45121 REM SWITCH TO OTHER SIDE OF THE SCREEN
46121 X=X+DX:REM ADD DELTA X TO X
47121 >::=;x:At.JD255: REt1 MAKE SURE :";IS IH ALLm~ED RAt.JGE

48121 Y=~+D~:REM ADD DELTA Y TO Y
485 POKEVIC+16,SIDE
49121 POKEVIC,X:REM PUT HEW X VALUE IHTO SPRITE I2I'S
:>0:POS IT I OI.j
51121 POKEVIC+1.~:REM PUT HEW Y VALUE IHTO SPRITE
12I"S 'T' POSITImJ
52121 GETA$:REM GET A KE~ FROM THE KE~BOARD
521 IFA$="M"THENPOKEVIC+28,1:REM USER SELECTED
MUL TI COLOR

52;;:; I FA$=" H" THENPOKEV IC+28., 121:REM USER SELF;:CTED
HIGH RESOLUTIOt.j
53121 GOT034121

6121121 REM ***** SPRITE DATA *****
61121 DATA64.12I,1,16, 17121,4,6,17121,144,1121, 170,16121,42,
17121,168,41,105,11214,169,235,11216
62121 DATA169,235.11216,169,235,10G,17121,170,170,170,
170,170.170,170,170,170,170,170
63121 DATA166, 17121,154,169,S5, 11216.17121,85, 170,42,170,

168,10,170,160,1,0,64,1,121,64
640 DATA5 ..1;3,80 -'0

PROGRAMMING GRAPHICS 149

OTHER GRAPHICS FEATURES

SCREEN BLANKING

Bit 4 of the VIC-II control register controls the screen blanking func-
tion. It is found in the control register at location 53265 ($D011). When it
is turned ON (in other words, set to a 1) the screen is normal. When bit 4
is set to 0 (turned OFF), the entire screen changes to border color.

The following POKE blanks the screen. No data is lost, it just isn't
displayed.

"POKE53265,PEEK(53265)AND 239

To bring back the screen, use the POKE shown below:

POKE 53265,PEEK(53265)OR 16

NOTE: Turning off the screen will speed up the processor slightly. This means that

program RUNning is also sped up.

RASTER REGISTER

The raster register is found in the VIC-II chip at location 53266
($DOI2). The raster register is a dual purpose register. When you read
this register it returns the lower 8 bits of the current raster position. The
raster position of the most significant bit is in register location 53265
($D011). You use the raster register to set up timing changes in your
display so that you can get rid of screen flicker. The changes on your
screen should be made when the raster is not in the visible display area,
which is when your dot positions fall between 51 and 251.

When the raster register is w.ritten to (including the MSB) the number
written to is saved for use with the raster compare function. When the
actual raster value becomes the same as the number written to the

raster register, a bit in the VIC-II chip interrupt register 53273 ($DO19) is
turned ON by setting it to 1.

NOTE: If the proper interrupt bit is enabled (turned on), an interrupt (IRQ) will occur.

150 PROGRAMMING GRAPHICS

INTERRUPT STATUS REGISTER

The interrupt status register shows the current status of any interrupt
source. The current status of bit 2 of the interrupt register will be a 1
when two sprites hit each other. The same is true, in a corresponding 1
to 1 relationship, for bits 0-3 listed in the chart below. Bit 7 is also set
with aI, whenever an interrupt occurs.

The interrupt status register is located at 53273 ($DOI9) and is as
follows:

BIT # DESCRIPTIONLATCH

IRST
IMDC

IMMC

ILP

IRQ

o Set when current raster count = stored raster count

1 Set by SPRITE-DATAcollision (1st one only, until reset)
2 Set by SPRITE-SPRITEcollision (1st one only, until reset)
3 Set by negative transition of light pen (1 per frame)
7 Set by latch set and enabled

Once an interrupt bit has been set, it's "latched" in and must be
cleared by writing a 1 to that bit in the. interrupt register when you're
ready to handle it. This allows selective interrupt handling, without hav-
ing.to store the other interrupt bits.

The INTERRUPTENABLEREGISTERis located at 53274 ($D01A). It has

the same format as the interrupt status register. Unless the correspond-
ing bit in the interrupt enable register is set to aI, no interrupt from that
source will take place. The interrupt status register can still be polled for
information, but no interrupts will be generated.

To enable an. interrupt request the corresponding interrupt enable bit
(as shown in the chart above) must be set to a 1.

This powerful interrupt structure lets you use split screen modes. For
instance you can have half of the screen bit mapped, half text, more
than 8 sprites at a time, etc. The secret is to use interrupts properly. For
example, if you want the top half of the screen to be bit mapped and
the bottom to be text, just set the raster compare register (as explained
previously) for halfway down the screen. When the interrupt occurs, tell
the VIC-II chip to get characters from ROM, then set the raster compare
register to interrupt at the top of the screen. When the interrupt occurs
at the top of the screen, tell the VIC-II chip to get characters from RAM
(bit map mode).

PROGRAMMING GRAPHICS 151

You can also display more than 8 sprites in the same way. Unfortu-
nately BASIC isn't fast enough to do this very well. So if you want to start
using display interrupts, you should work in machine language.

SUGGESTEDSCREEN AND CHARACTER
COLOR COMBINATIONS

Color TV sets are limited in their ability to place certain colors next to
each other on the same line. Certain combinations of screen and char-
acter colors produce blurred images. This chart shows which color com-
binations to avoid, and which work especially well together.

CHARACTER COLOR
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

o

1

2

3

4

5
a:
9 6
8 7

~ 8
w
~ 9
(/)

10

11

12

13

14

15

. = EXCELLENT. = FAIR
X = POOR

152 PROGRAMMING GRAPHICS

x . X . . . X . . X
. X . X . . . X X . .
X . X X . X X . . X . X X X X .
. X X X X . . X X X X . X X . X

. . X X X X X X X X X X X X X .

. . X . X X X X X X X . X . X .

. . X . X X X X X X X X X . . .

. X . X X X . X X X X

. . . X X X X . X . X X X X X .
X . X X X X X . . X . X X X X .
. . . X X X X . X . X X X X X .
. . X . X X X . X X X X
. . . X X X . X X . X . X X X .
. X X X X . . X X X X . X X X X
. . X . X X . X X X X . X X X .
. . . X . . . X X X . X

PROGRAMMING SPRITES-ANOTHER LOOK
For those of you having trouble with graphics, this section has been

designed as a more elementary tutorial approach to sprites.

MAKING SPRITES IN BASIC-A SHORT PROGRAM

There are at least three different BASIC programming techniques

which let you create graphic images and cartoon animations on the
Commodore 64. You can use the computer's built-in graphics character

set (see Page 376). You can program your own characters (see Page
108) or . . . best of all . . . you can use the computer's built-in "sprite
graphics." To illustrate how easy it is, here's one of the shortest
spritemaking programs you can write in BASIC:

10
20
30
40
5(1
60
70
80

AllDramE
PR ItH "6' -

POKE2iZ14iZ1.. 13
FOF:::;=8:32TO::::32+62 : POKES, 255 : t'~EXT
11,"==5:3248

POKEV+21,l
POKE' +:39.. 1
POKE'v'.' 24
POKE + 1 .' 100

This program includes the key "ingredients" you need to create any
sprite. The POKE numbers come from the SPRITEMAKINGCHART on
Page 176. This program defines the first sprite . . . sprite 0 . . . as a

solid white square on the screen. Here's a line-by-line explanation of the
program:

LINE 10 clears the screen.

LINE 20 sets the "sprite pointer" to where the Commodore 64 will

read its sprite data from. Sprite 0 is set at 2040, sprite 1 at 2041, sprite
2 at 2042, and so on up to sprite 7 at 2047. You can set all 8 sprite
pointers to 13 by using this line in place of line 20:

20 FOR SP=2040T02047:POKE SP,13:NEXT SP

LINE 30 puts the first sprite (sprite 0) into 63 bytes of the Commodore

64's RAM memory starting at location 832 (each sprite requires 63 bytes

of memory). The first sprite (sprite 0) is "addressed" at memory locations
832 to 894.

PROGRAMMINGGRAPHICS 153

LINE 40 sets the variable "V" equal to 53248, the starting address of
the VIDEO CHIP. This entry lets us use the form (V+number) for sprite
settings. We're using the form (V+number) when POKEing sprite settings
because this format conserves memory and lets us work with smaller
numbers. For example, in line 50 we typed POKEV+21. This is the same
as typing POKE 53248+21 or POKE 53269 . . . but V+21 requires less

space than 53269, and is easier to remember.

LINE 50 enables or "turns on" sprite o. There are 8 sprites, numbered
from 0 to 7. To turn on an individual sprite, or a combination of sprites,
all you have to do is POKE V+21 followed by a number from 0 (turn all
sprites off) to 255 (turn all 8 sprites on). You can turn on one or more
sprites by POKEing the following numbers:

POKE V+21, 1 turns on sprite O. POKEV+21, 128 turns on sprite 7. You
can also turn on combinations of sprites. For example, POKE V+21, 129
turns on both sprite 0 and sprite 7 by adding the two "turn on" numbers
(1+128) together. (See SPRITEMAKINGCHART, Page 176.)

LINE 60 sets the COLOR of sprite O. There are 16 possible sprite
colors, numbered from 0 (black) to 15 (grey). Each sprite requires a
different POKE to set its color, from V+39 to V+46. POKE V+39,1
colors sprite 0 white. POKE V+46,15 colors sprite 7 grey. (See the
SPRITEMAKINGCHART for more information.)

When you create a sprite, as you just did, the sprite will STAY IN
MEMORY until you POKE it off, redefine it, or turn off your computer.
This lets you change the color, position and even shape of the sprite in
DIRECTor IMMEDIATEmode, which is useful for editing purposes. As an
example, RUN the program above, then type this line in DIRECTmode
(without a line number) and hit the .:~alll:U. key:

POKE V+39,8

The sprite on the screen is now ORANGE. Try POKEing some other num-
bers from 0 to 15 to see the other sprite colors. Because you did this in
DIRECTmode, if you RUNyour program the sprite will return to its origi-
nal color (white).

154 PROGRAMMING GRAPHICS

LINE 70 determines the HORIZONTALor "X" POSITION of the sprite
on the screen. This number represents the location of the UPPER LEFT
CORNER of the sprite. The farthest left horizontal (X) position which you
can see on your television screen is position number 24, although you
can move the sprite OFF THE SCREENto position number O.

LINE 80 determines the VERTICALor "Y" POSITION of thE:'sprite. In
this program, we placed the sprite at X (horizontal) position 24, and Y
(vertical) position 100. To try another location, type this POKE in DIRECT
mode and hit _t~:llIlt~/_:

POKE V,24:POKE V+l,50

This places the sprite at the upper left corner of the screen. To move the
sprite to the lower left corner, type this:

POKE V,24:POKE V+l,229

Each number from 832 to 895 in our sprite 0 address represents one
block of 8 pixels, with three 8-pixel blocks in each horizontal row of the
sprite. The loop in line 80 tells the computer to POKE 832,255 which
makes the first 8 pixels solid. . . then POKE 833,255 to make the second
8 pixels solid, and so on to location 894 which is the last group of 8
pixels in the bottom right corner of the sprite. To better see how this
works, try typing the following in DIRECT mode, and notice that the
second group of 8 pixels is erased:

POKE 833,0 (to put it back type POKE 833,255 or RUN your program)

The following line, which you can add to your program, erases the
blocks in the MIDDLEof the sprite you created:

90 FOR A=836 TO 891 STEP 3:POKE A,O:NEXTA

Remember, the pixels that make up the sprite are grouped in blocks of
eight. This line erases the 5th group of eight pixels (block 836) and every
third block up to block 890. Try POKEing any of the other numbers from
832 to 894 with either a 255 to make them solid or 0 to make them
blank.

PROGRAMMING GRAPHICS 155

CRUNCHING YOUR SPRITE PROGRAMS

Here's a helpful "crunching" tip: The program described above is already short, but it

can be made even shorter by "crunching" it smaller. In our example we list the key

sprite settings on separate program lines so you can see what's happening in the

program. In actual practice, a good programmer would probably write this program
as a TWO LINE PROGRAM. . . by "crunching" it as follows:

10PRINTCHR$(147):V=53248:POKEV+21, 1:POKE2040, 13:
POKEV+39,1

20FORS =832T0894: POKES,255:NEXT:POKEV,24: POKEY+ 1,100

For more tips on how to crunch your programs so they fit in less memory and run more

efficiently, see the "crunching guide" on Page 24.

TV SCREEN

A Sprite located here must have both its
X-position (horizontal) and V-position (vertical)
set so it can be displayed on the screen.

Figure 3-4. The display screen is divided into a grid of X and Y coor-
dinates.

156 PROGRAMMING GRAPHICS

!IA \
X POSITION = HORIZONTAL

...J
«
()

a:
w
>
II

Z
0

Ci5
0 /a.
>- /

I
/

POSITIONING SPRITES ON THE SCREEN

The entire display screen is divided into a grid of X and Y coordi-
nates, like a graph. The X COORDINATE is the HORIZONTALposition
across the screen and the Y COORDINATEis the VERTICALposition up
and down (see Figure 3-4).

To position any sprite on the screen, you must POKE TWO SETTINGS
. . . the X position and the Y position .. . these tell the computer where

to display the UPPER LEFTHAND CORNER of the sprite. Remember that
a sprite consists of 504 individual pixels, 24 across by 21 down. . . so if
you POKE a sprite onto the upper left corner of your screen, the sprite
will be displayed as a graphic image 24 pixels ACROSS and 21 pixels
DOWN starting at the X-V position you defined. The sprite will be dis-
played based on the upper left corner of the entire sprite, even if you
define the sprite using only a small part of the 24X21-pixel sprite area.

To understand how X-Y positioning works, study the following dia-
gram (Figure 3-5), which shows the X and Y numbers in relation to your
display screen. Note that the GREY AREA in the diagram shows your
television viewing area . . . the white area represents positions which
are OFF your viewing screen. . .

0--

50 -

::
oa:u.
Zit)
=>",a:C\I
(/)0
ZI-

~t

o 24
:~
1

X POSITIONS RUN FROM 0 TO 255,
THEN YOU MUST POKE V+16, 1 255

AND START OVER AT 0 TO 91 b' 'J1
I .

X =255. Y = 50 I POKE V+16, 1 AND

\ 1 X =65, Y =50

X =231, Y = 50 ': \ I

I

i

: x = 24,Y = 50

:/

I
I

VIEWINGSCREENAREA
I
I
I
I
I
I
I

x =24, Y =229 X = 229, Y = 231 I

x = 24, Y =250 POKE V+16, 1 AND
X = 65,Y =229

Figure 3-5. Determining X-V sprite. positions.

PROGRAMMINGGRAPHICS 157

To display a sprite in a given location, you must POKE the X and Y
settings for each SPRITE . . . remembering that every sprite has its own
unique X POKE and Y POKE. The X and Y settings for all 8 sprites are
shown here:

POKE THESE VAWES TO SET.X-Y SPRITE POSITIONS

POKEING AN X POSITION: The possible values of X are 0 to 255,
counting from left to right. Values 0 to 23 place all or part of the sprite
OUT OF THE VIEWINGAREAoff the left side of the screen. . . values 24

to 255 place the sprite IN THE VIEWING AREA up to the 255th position
(see next paragraph for settings beyond the 255th X position). To place
the sprite at one of these positions, just type the X-POSITION POKE for
the sprite you're using. For example, to POKE sprite 1 at the farthest left
X position IN THE VIEWING AREA, type: POKE V+2,24.

X VALUESBEYOND THE 255TH POSIT10N: To get beyond the 255th
position across the screen, you need to make a SECOND POKEusing the
numbers in the "RIGHT X" row of the chart (Figure 3-5). Normally, the
horizontal (X) numbering would continue past the 255th position to 256,
257, etc., but because registers only contain 8 bits we must use a "sec-
ond register" to access the RIGHT SIDE of the screen and start our X
numbering over again at O. So to get beyond X position 255, you must
POKE V+ 16 and a number (depending on the sprite). This gives you 65
additional X positions (renumbered from 0 to 65) in the viewing area on
the RIGHT side of the viewing screen. (You can actually POKE the right
side X value as high as 255, which takes you off the right edge of the
viewing screen.)

POKEING A Y POSITION: The possible values of Yare 0 to 255, count-
ing from top to bottom. Values 0 to 49 place all or part of the sprite OUT
OF THEVIEWINGAREAoff the TOP of the screen. Values 50 to 229 place
the sprite IN THE VIEWING AREA. Values 230 to 255 place all or part of
the sprite OUT OF THE VIEWING AREA off the BOTTOM of the screen.

158 PROGRAMMING GRAPHICS

SPRITEO SPRlTE1 SPRlTE2 SPRlTE3 SPRITE4 SPRITES SPRlTE6 SPRlTE7

SETX v,x V+2,X V+4,X V+6,X V+8,X V+10,X V+12,X V+14,X

SETY V+l,Y V+3,Y V+S,Y V+7,Y V+9,Y V+l1,Y V+13,Y V+1S,Y

RIGHTX V+16,1 V+16,2 V+16,4 V+16,8 V+16,16 V+16,32 V+16,64 V+16,128

let's see how this X-V positioning works, using sprite 1. Type this pro-
gram:

-'!mil G!DD
10 PRINT"~~3248:POKEV+21.2:POKE2041.13:
FOP::;=832T0895 :POKES, 255 :t.jE:'<T

20 POKE' +41;):, 7

3(1 POKEV+2., 24

4(1 POKEV+3, 50

This simple program establishes sprite 1 as a solid box and positions it
at the upper left corner of the screen. Now chclnge line 40 to read:

40 POKE V+3,229

This moves the sprite to the bottom left corner of the screen. Now let's
test the RIGHTX LIMITof the sprite. Change line 30 as shown:

30 POKE V+2,255

This moves the sprite to the RIGHTbut reaches the RIGHTX LIMIT,which
is 255. At this point, the "most significant bit" in register 16 must be SET.
In other words, you must type POKEV+16 and the number shown in the
"RIGHT X" column in the X-Y POKE CHART above to RESTARTthe X
position counter at the 256th pixel/position on the screen. Change line 30
as follows:

30 POKE V+16, PEEK(V+16)OR 2:POKE V+2,0

POKEV+ 16,2 sets the most'significant bit of the X position for sprite 1
and restarts it at the 256th pixel/position on the screen. POKE V+2,O
displays the sprite at the NEW POSITION ZERO, which is now reset to the
256th pixel.

To get back to the left side of the screen, you must reset the most
significant bit of the X position counter to 0 by typing (for sprite 1):

POKE V+16, PEEK(V+16)AND 253

TO SUMMARIZE how theX positioning works . . . POKEthe X POSI-
TION for any sprite with a number from 0 to 255. To access a position
beyond the 255th position/pixel across the screen, you must use an ad-
ditional POKE(V+ 16) which sets the most significant bit of the X position
and start counting from 0 again at the 256th pixel across the screen.

PROGRAMMINGGRAPHICS 159

This 'POKEstarts the X numbering over again from 0 at the 256th posi-
tion (Example: POKE V+16, PEEK(V+16)OR 1 and POKE V,1 must be
included to place sprite 0 at the 257th pixel across the screen.) To get
back -to the left side X positions you have to TURNOFFthe control setting
by typing 'POKE V+'16, PEEK(V+16)AND 254.

POSITIONING MUIIIPLE SPRITES ON THE SCREEN

Here's a program which defines THREE:DIFFERENTSPRITES(0, 1, and
2) in different colors .and places them in different positions .on the
screen:

...raI!tJ!n
10 PRI NT":i"~53248 : FORS=.832T0895 : POKES, 255 : t.jEXT
2121FORt1=2040T02042 :'POKEM, .13 ::NE:><:T
3(1 POKEV+21.,7
40 POKEV+.39,l: POKEV+4iZ1.,7 :P.OKEV+41, 8
50 POKEV,24:POKEV+l,50
,513 POKEV+2., .12 : POKEV+3., 229
70 POKEV+4,255:POKEV+5,50

For convenience, all 3 sprites have been defined as solid squares,
getting their data from. the same place. The 'important lesson here is
how the 3 sprites are positioned. The white .sprite 0 is ot the. top lefthand
corner. The.yellow sprite 1 is at the bottom lefthand corner but'HALF the
sprite is OFF THE SCREEN(remember, 24 is the leftmost X position in the
viewing area. . . an X position less than 24 puts 'oll'or part of the sprite
'off the screen and we .used an X position 12 here which put the s.prite
halfway off.the screen). Finally, the orange sprite 2 is at the RIGHT X
LIMIT (position 255) . . . but what if you want to display a sprite in the
area to .the RIGHT of X position 255?

DISPLAYINGA SPRITE BEYOND THE 255TH X-POSITION

Displaying a sprite beyond the 255th X position requires a special
POKEwhich SETSthe .most significant 'bit of the X position and starts over
at the 256th pixel position across the screen. Here's how it works. . .

First, you POKE V+ 16 with the number for :the sprite you're using
(check the "RIGHT X" row in the X-Y chart. . . we'll use sprite 0). Now
we assign an X position, keeping in mind that the X counter starts .over

from 0 at the 256th position on the screen. Change line 50 to read as
follows:

50 POKEV+16,1:POKE V,24:POKE V+l,75

1-60 :PROGRAMMING GRAPHICS

This line POKEs V+16 with the number required to "open up" the right

side of the screen. . .the new X position 24 for sprite 0 now begins 24

pixels to the RIGHT of position 255. To check the right edge of the
screen, change line 60 to:

60 POKE V+16,1:POKE V,65:POKE V+l,75

Some experimentation with the settings in the sprite chart will give you
the settings you need to position and move sprites on the left and right
sides of the screen. The section on "moving sprites" will also increase
your understanding of how sprite positioning works.

SPRITE PRIORITIES

You can actually make different sprites seem to move IN FRONT OF or
BEHINDeach other on the screen. This incredible three dimensional illu-

sion is achieved by the built-in SPRITEPRIORITIESwhich determine which
sprites have priority over the others when 2 or more sprites OVERLAPon
the screen.

The rule is "first come, first served" which means lower-numbered

sprites AUTOMATICALLYhave priority over higher-numbered sprites. For
example, if you display sprite 0 and sprite 1 so they overlap on the
screen, sprite 0 will appear to be IN FRONT OF sprite 1. Actually, sprite
o always supersedes all the other sprites because it's the lowest num-
bered sprite. In comparison, sprite 1 has priority over sprites 2-7; sprite
2 has priority over sprites 3-7, etc. Sprite 7 (the last sprite) has LESS
PRIORITYthan any of the other sprites, and will always appear to be
displayed "BEHIND" any other sprites which overlap its position.

To illustrate how priorities work, change lines 50, 60, and 70 in the
program above to the following:

18
20
31Z1
48
5121
68
7121

~ I"'~.":I'IM:I
I .. II' _C:"'-' . ~_r'.'-t'-' C:-. f!"'. '-,IC:'!:':'. ...P~INT. .V-~3,48.FOR~-o~,T089~.POKE~,~~~.NE0T

FORt1=2048T02042 : POKEM, 13: t.1E:>I,T.
POKEV+21,7
POKEV+39,1:POKEV+40,7:POKEV+41,8
POKEV., 24 : POKEV+ 1 , 5121: pm~E',...+16., (I
POKEV+2.34:POKEV+3,60
POKEV+4,44:PC~EV+5,70

You should see a white sprite on top of a yellow sprite on top of an

orangesprite. Of course, now that you see how priorities work, you can
also MOVE SPRITESand take advantage of these priorities in your ani-
mation.

PROGRAMMING GRAPHICS 161

DRAWING A SPRITE

Drawing a Commodore sprite is like coloring the empty spaces in a
coloring book. Every sprite consists of tiny dots called pixels. To draw a
sprite, all you have to do is "color in" some of the pixels.

Look at the spritemaking grid in Figure 3-6. This is what a blank sprite
looks like:

1
6312631
4 2 6 842 1 8 4 2 6 842 1

1
263 1
8 4 2 6 8 4 2 1

Figure 3-6. Spritemaking grid.

Each little "square" represents one pixel in the sprite. There are 24 pixels
across and 21 pixels up and down, or 504 pixels in the entire sprite. To
make the sprite look like something, you have to color in these pixels
using a special PROGRAM . . . but how can you control over 500 indi-
vidual pixels? That's where computer programming can help you. In-
stead of typing 504 separate numbers, you only have to type 63 num-
bers for each sprite. Here's how it works .

162 PROGRAMMING GRAPHICS

CREATING A SPRITE . . . STEP BY STEP

To make this as easy as possible for you, we've put together this
simple step by step guide to help you draw your own sprites.

STEP 1:

Write the spritemaking program shown here ON A PIECEOF PAPER.
note that line 100 starts a special DATAsection of your program which
will contain the 63 numbers you need to create your sprite.

~m:mm
10 PR HIT":1" : POKE53;,80, 5 : POKE53281 , 6
20 V=53248:POKEV+34,3
30 POKE53269,4:POKE2042,13
40 FORH=(;H062: READQ: POKE':'32+t.l.. Q : t.jEXT

100 DATA255,255,255
1'211 DATAI28,0..1
102 DATAI28..0.. 1
103 DRTAI28, 0..1
1(14 DATAI44.0.1-
105 Dt1TI"I144..0..1-
106 DATAI44,0,1-
107 DRTI"I144..0, 1-
108 DATAI44,0,1-
109 DATAI44,O,I-
110 DATAI44,Q,1-
111 DATAI44,0,1-
112 DATAI44,0,1-
113 DATAI44..(I, 1-
114 DATAI28, 0..1-
115 DATAI28, 0..1-
116 DATAI28,O,I-
117 DATA128, 0.. 1-
11:3 DATA128..0..1-
119 DATAI28,0,1-
12121DATA255., 255., 255
:2(10 :.<:=200: 'T'=1(1(1: POKE53252.. :":: POKE53253.. 'r'

STEP 2:

Color in the pixels on the spritemaking grid on Page 162 (or use a piece
of graph paper. . . remember, a sprite has 24 squares across and 21
squares down). We suggest you use a pencil and draw lightly so you can
reuse this grid. You can create any image you like, but for our example
we'll draw a simple box.

STEP 3:

look at the first EIGHTpixels. Each column of pixels has a number (128,
64, 32, 16, 8, 4, 2, 1). The special type of addition we are going to
show you is a type of BINARYARITHMETICwhich is used by most com-

PROGRAMMING GRAPHICS 163

2664 32 16 6 4 2 , 12864 32 16' 8 4 2 , 12864 32 '6 6 4 2 ,

puters as a special way of counting. Here's a close-up view of the first

eight pixels in the top left hand corner of the sprite:

STEP4:

Add up the numbers of the SOLID pixels. This first group of eight pixels
is completely solid, so the total number is 255.

STEP5:

Enter that number as the FIRST DATA STATEMENTin line 100 of the

Spritemaking Program below. Enter 255 for the second and third groups
of eight.

STEP6:

Look at the FIRSTEIGHT PIXELSIN THE SECOND ROW of the sprite. Add
up the values of the solid pixels. Since only one of these pixels is solid,
the total value is 128. Enter this as the first DATAnumber in line 101.

1618 4 2 1

STEP7:

Add up the values of the next group of eight pixels (which is 0 because

they're all BLANK)and enter in line 101. Now move to the next group of
pixels and repeat the process for each GROUPOF EIGHTPIXELS(there
are 3 groups across each row, and 21 rows). This will give you a total of
63 numbers. Each number represents ONE group of 8 pixels, and 63
groups of eight equals 504 total individual pixels. Perhaps a better way
of looking at the program is like this . . . each line in the program
represents ONE ROW in the sprite. Each of the 3 numbers in each row
represents ONE GROUP OF EIGHT PIXELS. And each number tells the

computer which pixels to make SOLID and which pixels to leave blank.

164 PROGRAMMING GRAPHICS

STEP 8:

CRUNCH YOUR PROGRAM INTO A SMALLER SPACE BY RUNNING TO-

GETHER ALL THE DATA'STATEMENTS, AS SHOWN IN THE SAMPLE PRO-

GRAM BELOW. Note that we asked you to write your sprite program on
a piece of paper. We did this for a good reason. The DATA STATEMENT

LINES 100- 120 in. the program. in STEP 1 are only thereto help you. see
which numbers relate to which 'groups of pixels in your sprite. Your final
program should be "crunched" like this:

~S!iImm
1121"PRHlT":J" :'POI<E53280, 5: POKE53281., 6
2(1 V=5::::24:3: POKEV+34,. 3
30 POKE53269., 4 : POKE2042, 13
4121FOF.:I'I=0T062: READQ : POKE832+t.j, Q : NEi':T
100 DATA255,255,255,128,(I,1,128,0,1,128,O.I,144,(I,
1,144,0,1..144,0,1,144,(1,1
101 DATAL44,0,1,144~0,1,144,O,1,144,e,I,144,0,1,
144, 0., 1 .' 12:::., (I, L 128, 0, 1
11212DI=tTAI28, 10,1.,128.,121,1,128.,.(1,1.,128.. e.. 1..255.. 255, 25~l
20tt ;<:=200: ITI=100 : POI<E53252., :x:: POKE53253., IT'

MOVING YOUR SPRITE ON THE SCREEN

Now that you've created your sprite, let's do some interesting things.
with it. To move your sprite: smoothly across the screen, add these two

lines' to your program:

50 POKE V+5,100:FOR X=24T0255:POKE V+4,X:NEXT:POKE
V+16,4'

55 FOR X=OT065:POKE V+4,X:NEXT X:POKE V+ 16,0:GOTO 50

LINE 50 POKEs the. Y POSITION at 100 (try 50 or 229 instead for
variety). Then it sets up a FOR . . . NEXT loop which POKEs the sprite

into X position 0 to X position 255, in order. When it reaches the 255th

position, it POKEs the RIGHT X POSITION (POKE V+ 16,4) which is re-
quired to'cross to' the riglit.side of the s<:reen.

LINE55 hasa FOR. . . NEXTloop which continues to POKEthe sprite
in. the last 65 positions on the screen. Note that the X value was reset to
zero but because you. used the RIGHT X setting (POKE V+ 16,2) X starts
over on the right side of the screen.

This line keeps going back to itself (GOTO 50).. If you just. want the
sprite to' move ONCE' across the screen and disappear, then take. out
GOT050.

PROGRAMMINGGRAPHICS 165.

,Here's a line which moves the sprite BACKAND FORTH:

50 POKE V+5,100:FOR X=24T0255:POKE V+4,X:NEXT: POKE
V+16,4:FOR X=OT065: POKE V+4,X: NEXT X

55 FOR X=65TOO STEP-l:POKE V+4,X:NEXT:POKE V+16,O: FOR
X=255T024 STEP-l: POKE V+4,X:NEXT

60 GOTO 50

Do you see how these programs work? This program is the same as the
previous one, except when it reaches the end of the right side of the
screen, it REVERSES.ITSELFand goes back in the other direction. That is
what the STEP-l accomPlishe

~

. . . it tells the program to POKE the
sprite into X values from 65 to 0 on the right side of the screen, then
from 255 to 0 on the left sid of the screen, STEPping backwards
minus-l position at a time.

VERTICAL SCROLLING

This type of sprite movement

t
called "scrolling." To scroll your sprite

up or down in the Y position, 'ou only have to use ONE LINE. ERASE
LINES 50 and 55 by typing t e line numbers by themselves and
hitting .:l:IIII~~I. like this:

50 (

55 (

Now enter LINE50 again as follOws:

50 POKE V+4,24:FOR Y=OT0I255:POKE V+5,Y:NEXT'

THE DANCING MOUSE-A SPRITE PROGRAM EXAMPLE

Sometimes the techniques d

!
Cribed in a programmer's reference

manual are difficult to understa d, so we've put together a fun sprite
program called "Michael's Dan ing Mouse." This program uses three
different sprites in a cute animation with sound effects-and to help
you understand how it works we've included an explanation of EACH
COMMAND so you can see exactly how the program is constructed:

166 PROGRAMMING GRAPHICS

5 8=54272: POKES+24~, 15: POKES., 22121: POKES+ 1.-68 : POKES+5,
15:POKES+6,215
1121POKES+7,120:POKES+8,100:POKES+12,15:POKES+13,215

'~III.~.":I.h'JI:I

15 PRIHT":J": V=53248: POKEV+2L 1
2~ZI FORS 1 =12288TO 1235121 : READQ 1 : POKES 1 , Q1 : HE:":T

25 FORS2= 12352TO 12414 : F.:EAD02: POKES2., 02 : t.JE:":T
30 FORS3=12416TOI2478:READQ3:POKES3,Q3:HEXT
35 POKEV+39,15:POKEV+l,68

,,&lIB
40 PF.:IHTTAB (16(1) "=11 At-! THE
45 P=192
5121FORX=I2IT0347STEP3
55 RX=INT(X/256):LX=X-RX*256
60 POKE V, U<:: POKEV+ 16, f;:>~
7(1 I FP= 192THE~JG08U:E:200
75 IFP=193THEHGOSUB3121121
8121POKE204e,p:FORT=1T06121:HE>~
:35 P=P+l:IFP>194THENP=192
9121HE:":T
95 EHD
1121121DATi''I:3(1.-er, 12121.,63.- (I.- 252., 127, 129., 254., 127.- 129, 254,

DAtJC UJO t1iU I'''E
;6Ia

- -"-' ! ~II

127~189~254~127~255J254
101 DATA63,255,252,31,187J248J3,187,192Jl,255J128,
3,189,192,1,231,128,1,255,121
102 DATA31,255,O,0,124,0,0,254,0,1.199.32.3.131.
224,7,1,192.1.192,0,3,192,121
103 DATA30,12I. 12121,63.0,252,127,129,254,127, 129,254
127J189J254J127J255.. 254
11214 DATA63,255,252,31,221,248,3,221~192,1,255,128,
3J255J192~1}195J128}lJ231J3
105 DATA31)255J255)0)124)0)0)254~0)lJ199J0J7J1J128J
7,0,21214,1.128,124,7,128,56
106 DATA30,0.12121,63~0,252,127,129,254.127,129,254.
127)189)254)127)255)254
107 DATA63,255,252,31,221,248.3,221,192,1,255,134.
3,189,204,1,199,152~1,255,48
108 DATI'=!1 .255., 22"1., 1 .-252., 0., 3., 254., 0
109 DATA7,14,0,204,14,O,248,56,0,112,112,O,O.60,O.
-1
20121 POKES+4,129:POKES+4, 128:RETURN
31210 POKE8+11 , 129:POKES+l1. 128:RETURN

PROGRAMMING GRAPHICS 167

LINE 5:

5=54272

POKES+24, 15'

POKES,220

POKES+ 1,68

POKES+5,15

POKES+6~215

LINE' 10:

POKES+7,120

POKES+8,100

POKES+12,15

POKES'+13,2l5

LINE 15:

PRINT" Emil'
1...~.j:I.]fll:l II

V=53248

POKfV+2l,1

Sets the variable 5 equal to 54272, which is the
beginning memory location of the SOUND CH1P.
From now on, instead of poking a direct memory
location, we will POKE 5 plus a value..
Same, as POKE '54296,1-5 which sets VOLUME'to
highest leveL.
Same as POKE- 54272,220 which sets Low Fre-

quency in Voice 1"for a note which approximates'
high'C in Octave' 6.
Same as POKE.54273~68' which sets High Fre'"
quencyin Voice 1 for a. note: which approximates
high- C. in Octave 6;
Same as POKE 54277,15 which sets Attack/Decay
for Voice 1 and; in thi~ 'case co,nsists of the

maximum DECAYlevel' with no attack, which' pro'" .
duces the "echo"'effect.
Same as POKE 54278,21S'which sets' Sustain/ Re-
lease. for Voice 1 (21"5 represents a combination
of sustain and release values). .

Same as POKE 54279, 120'which sets the-Low Fre-
quency for Voice 2.
Same as POKE 54280,100 which se1s the High
Frequency' for Voice .2.
Same as POKE 54284,15 which sets Attack/Decay
for Voice 2 to same level .as Voice 1 above.
Same' as POKE 54285;215,which sets Sustain/ Re-
lease for Voice 2 to same level as Voice 1 above.

Clears the screen when the program begins.

Defines the variable "v" as the starting location

of the VIC chip which controls sprites. From now

on we will define sprite locations as V plus a
value.

Turns on (enables)' sprite number 1.

168 PROGRAMMING GRAPHICS

LINE 20:

FORS 1= 12288

TO 12350

READ Q 1

POKES1,Q1

NEXT

We are going to use ONE SPRITE(sprite 0) in this
animation, but we are going to use THREEsets of
sprite data to define three separate shapes. To
get our animation, we will switch the POINTERS
for sprite ° to the three places in memory where
we have stored the data which defines our three

different shapes. The same sprite will be rede-
fined rapidly over and over again as 3 different
shapes to produce the dancing mouse animation.
You can define dozens of sprite shapes in DATA
STATEMENTS,and rotate those shapes through
one or more sprites. So you see, you don't have to
limit one sprite to one shape or vice-versa. One
sprite can have many different shapes, simply by
changing the POINTER SETTING FOR THAT
SPRITE to different places in memory where the
sprite data for different shapes is stored. This
line means we have put the DATA for "sprite
shape 1" at memory locations 12288 to 12350.

Reads 63 numbers in order from the DATAstate-

ments which begin at line 100. Q1 is an arbitrary
variable name. It could just as easily be A, Z1 or
another numeric variable.

Pokes the first number from the DATA statements

(the first "Q1" is 30) into the first memory location
(the first memory location is 12288). This is the
same as POKE12288,30.

This tells the computer to look BETWEENthe FOR
and NEXT parts of the loop and perform those
in-between commands (READQ1 and POKES1,Q1

using the NEXTnumbers in order). In other words,
the NEXTstatement makes the computer READthe
NEXTQ1 from the DATASTATEMENTS,which is 0,
and also increments S1 by 1 to the next value,
which is 12289. The result is POKE12289,0 . . .
the NEXT command makes the loop keep going
back until the last values in the series, which are
POKE 12350,0.

PROGRAMMINGGRAPHICS 169

LINE 25:

FORS2 = 12352

TO 12414

READQ2

POKES2,Q2

NEXT

LINE 30:

FORS3= 12416
TO 12478
READQ3
POKES3,Q3

NEXT

LINE 35:

POKEV+39,15
POKEV+ 1,68

The second shape of sprite zero is defined by the
DATA which is located at locations 12352 to
12414. NOTE that location 12351 is SKIPPED. . .
this is the 64th location which is used in the

definition of the first sprite group but does not
contain any of the sprite data numbers. Just re-
member when defining sprites in consecutive lo-
cations that you will use 64 locations, but only
POKE sprite data into the first 63 locations.
Reads the 63 numbers which follow the numbers

we used for the first sprite shape. This READsim-
ply looks for the very next number in the DATA
area and starts reading 63 numbers, one at a
time.

Pokes the data (Q2) into the memory locations
(52) for our second sprite shape, which begins at
location 12352.
Same use as line 20 above.

The third shape of sprite zero is defined by the
DATAto be located at locations 12416 to 12478.

Reads last 63 numbers in order as Q3.
Pokes those numbers into locations 12416 to
12478.
Same as lines 20 and 25.

Sets color for sprite 0 to light grey.
Sets the upper right hand corner of the sprite
square to vertical (Y) position 68. For the sake of
comparison, position 50 is the top lefthand corner
Y position on the viewing screen.

170 PROGRAMMING GRAPHICS

LINE 40:

PRINTTAB(160)

I AM THE
DANCING
MOUSE!

mil"

LINE 45:

P= 192

LINE 50:

FORX=OT0347
STEP3

Tabs 160 spaces from the top lefthand CHAR-
ACTERSPACE on the screen, which is the same as
4 rows beneath the clear command. . . this starts

your PRINT message on the 6th line down on the
screen.

Hold down the B8 key and press the key
marked 11II at the same time. If you do this
inside quotation marks, a "reversed E" will ap-
pear. This sets the color to everything PRINTed
from then on to WHITE.

This is a simple PRINT statement.

This sets the color back to light blue when the
PRINT statement ends. Holding down m and

II at the same time inside quotation marks
causes a "reversed diamond symbol" to appear.

Sets the variable P equal to 192. This number 192
is the pointer you must use, in this case to "point"
sprite 0 to the memory locations that begin at lo-
cation 12288. Changing this pointer to the loca-
tions of the other two sprite shapes is the secret of
using one sprite to create an animation that is
actually three different shapes.

Steps the movement of your sprite 3 X positions at
a time (to provide fast movement) from position 0
to position 347.

PROGRAMMING GRAPHICS 171

LINE 55:

RX=INT(X/256)

LX=X-RX*256

LINE 60:

POKEV,LX

POKEV+16,RX

LINE 70:

IFP= 192THEN

GOSUB200

RXis the integer of X/256 which means that RXis
rounded off to 0 when X is less than 256, and RX
becomes 1 when X reaches position 256. We will
use RXin a moment to POKE V+16 with a 0 or 1
to turn on the "RIGHT SIDE" of the screen.

When the sprite is at X position 0, the formula
looks like this: LX= 0 - (0 times 256) or o. When
the sprite is at X position 1 the formula looks like
this: LX= 1 - (0 times 256) or 1. When the sprite
is at X position 256 the formula looks like this: LX
= 256 - (1 times 256) or 0 which resets X back to
o which must be done when you start over on the
RIGHT SIDEof the screen (POKEV+16,1).

You POKE V by itself with a value to set the Hori-
zontal (X) Position of sprite 0 on the screen. (See
SPRITEMAKING CHART on Page 176). As shown
above, the value of LX, which is the horizontal

position of the sprite, changes from 0 to 255 and
when it reaches 255 it automatically resets back
to zero because of the LXequation set up in line
55.

POKEV+16 always turns on the "right side" of
the screen beyond position 256, and resets the
horizontal positioning coordinates to zero. RX is
either a 0 or a 1 based on the position of the
sprite as determined by the RXformula in line 55.

If the sprite pointer is set to 192 (the first sprite
shape) the waveform control for the first sound ef-
fect is set to 129 and 128 per line 200.

172 PROGRAMMING GRAPHICS

LINE 75:

IFP=193THEN
GOSUB300

UNE 80:

POKE2040,P

FORT= lT060:
NEXT

LINE85:

P=P+1

IFP>194THEN
P= 192

If the sprite pointer is set to '193 (the second
sprite shape) the waveform control for the second
sound effect (Voice 2) is set to 129 and 128 per
line 300.

Sets the SPRITE POINTER to location 1-92 (re-
member P=192 in line 451 Here's where we use

the P).
A simple time delay loop which sets the speed at
.which the mouse dances. (Try a faster or slower
speed by increasing/decreasing the number t>0.)

Nowwe increase the value,of the pointer by add-
ing 1 'to the original value ofP.
We only w.ant to point the sprite YO3 memory lo-
cations. '192 points to locations 1"2288 to ,12350,
193 points to locatio'ns 12352 to 12414, and 194
points to locations 12416 to 12478. This line tells
the computer to reset P back to 192 as ,soon as P
becomes 195 so P never really becomes 195. P is
192, '193, 194 and then resets back to 192 and
the pointer winds up pointing consecutively to the
three sprite shapes in the three 64-byte groups of
memory locations containing the' DATA.

PROGRAMMING GRAPHICS 173

LINE90:

N EXTX

LINE 95

END

LINES100-109

DATA

After the sprite has become one of the 3 different
shapes defined by the DATA, only then is it
allowed to move across the screen. It will jump 3
X positions at a time (instead of scrolling smoothly
one position at a time, which is also possible).
STEPping 3 positions at a time makes the mouse
"dance" faster across the screen. NEXTX matches

the FOR. . . X position loop. in line 50.

ENDs the program, which occurs when the sprite
moves off the screen.

The sprite shapes are read from the data num-
bers, in order. First the 63 numbers which com-
prise sprite shape 1 are read, then the 63 num-
bers for sprite shape 2, and then sprite shape 3.
This data is permanently read into the.3 memory
locations and after it is read into these locations,
all the program has to do is point sprite 0 at the
3 memory locations and the sprite automatically
takes the shape of the data in those locations.
We are pointing the sprite at 3 locations one at a
time which produces the "animation" effect. If
you want to see how these numbers affect each
sprite, try changing the first 3 numbers in liNE
100 to 255, 255, 255. See the section on defining
sprite shapes for more information.

174 PROGRAMMING GRAPHICS

LINE 200:

POKES+4,129

POKES+4,128

RETURN

LINE 300:

POKES+11,129

POKES+ll,128

RETURN

Waveform control set to 129 turns on the sound
effect .
Waveform control set to 128 turns off the sound
effect .
Sends program back to end of line 70 after
waveform control settings are changed, to resume

program.

Waveform control set to 129 turns on the sound"
effect .
Waveform control set to 128 turns off the sound
effect .
Sends program back to end of line 75"to resume.

PROGRAMMING GRAPHICS 175

EASY SPR1TEMAKING CHART

176 PROGRAMMING' GRAPHICS

SPRITE SPRITE SPRITE SPRITE SPRITE SPRITE SPRITE SPRITE

0 1 2 3 .. 5 6 7

Turn on Sprite V+21,r V+21,2 V+21,4 V+21,8 V+21,16 V+21,32 V+21,64 V+21,128

Put in.Memory 2040, 2041, 2042, 2043, 2044, 2045, 2046, 2047,

(Set Pointers) 192 193 194 195 196 197 198 199

Locations for 12288. 12352 12416 12480. 12544 12608 12672. 12736

Sprite Pixel to to to to to to to to

(12288-12798) 12350 12414' 1247.8 12542 12606 12670 12734 12798

Sprite Color V+39,C V+40,C V+41,C V+42,C .V+43,C V+44,C V+45,C V+46,C

Set LEFTX V+O,X V+2,X V+4,X V+6,X V+8,X V+10,X V+12,X V+14,X

Position (0-255)

Set RIGHT X V+16,1. V+16,2 V+16,4 V+16,8 V+16,16 V+16,32 V+16,64 V+16,128

Position. (0- 255) V+O,X V+2,X V+4,X' V+6,X V+8,X V+10,X V+12,X V+14,X

Set Y Position V+I,Y V+3,Y V+5,Y V+7;Y. V+9,Y V+I1,Y V+13,Y V+15,Y

Expand Sprite V+29,1 V+29,2 V+29,4 V+29,8 V+29,16 V+29,32 V+29,64 V+29,128

Horizontally/)(

Expand Sprite V+23',1 V+23,2 V+23.4 V+23,8 V+23,16 V+23,32 V+23,64 V+23,128

Vertica lIylY

Tum On (Set) V+28,1 V+28,2 V+28;4 V+28,8 V+28,16 V+28,32 V+28,64 V+28,128

Multi-Color Mode

Multi-Color 1 V+37,C V+37,C V+37;C V+37,C V+37,C. V+37,C V+37,C V+37,C'

(First Color)

Multi-Color 2 V+38;C V+38,C V+38,C V+38,C V+38,C V+38,C V+38,C V+38,C

(Second Color)

Set Priority The rule is that lower numbered '.sprites always have display priority over higher

of Sprites numbered sprites. For example, sprite'O has priority over ALLother sprites, sprite

7 has last priority. This means lower numbered sprites always appearto move
IN FRONT OF or ON TOP OF higher numbered sprites.

Collision (Sprite

to Sprite) V+30 IF PEEK(V+30)ANDX=X THEN [action]

Collision (Sprite

to Background) V+31 IF PEEK(V+31)ANDX=X THEN [action]"

SPRITEMAKING NOTES

Alternative Sprite Memory Pointers and Memory Locations
Using Cassette Buffer

TURNING ON SPRITES:

You can turn on any individual sprite by using POKE V+21 and the

number from the chart. . . BUT. . . turning on just ONE sprite will turn
OFF any others. To turn on TWO OR MORE sprites, ADD TOGETHERthe
numbers of the sprites you want to turn on (Example: POKEV+21, 6 turns
on sprites 1 and 2). Here is a method you can use to turn one sprite off
and on without affecting any of the others (useful for animation).

EXAMPLE:

To turn off just sprite 0 type: POKE V+21,PEEK V+21AND(255-l).
Change the number 1 in (255-1) to 1,2,4,8,16,32,64, or 128 (for sprites
0-7). To re-enable the sprite and not affect the other sprites currently
turned on, POKEV+21, PEEK(V+2l)OR 1 and change the OR 1 to OR 2
(sprite 2), OR 4 (sprite 3), etc.

X POSITION VALUESBEYOND 255:

X positions run from 0 to 255 . . . and then STARTOVER from 0 to
255. To put a sprite beyond X position 255 on the far right side of the
screen, you must first POKE V+ 16 as shown, THEN POKE a new X value
from 0 to 63, which will place the sprite in one of the X positions at the
right side of the screen. To get back to positions 0-255, POKE V+16,0
and POKE in an X value from 0 to 255.

Y POSITION VALUES:

Y positions run from 0 to 255, including 0 to 49 off the TOP of the
viewing area, 50 to 229 IN the viewing area, and 230 to 255 off the
BOTTOM of the viewing area.

PROGRAMMINGGRAPHICS 177

Put in Memory SPRITE 0 SPRITE 1 SPRITE 2 If you're using 1 to 3 sprites
(Set pointers) 2040,13 2041,14 2042,15 you can use these memory

locations in the cassette

Sprite Pixel 832 896 960 buffer (832 to 1023) but
Locations for to 894 to 958 to 1022 for more than 3 sprites we
Blocks 13-15 suggest using locations from

12288 to 12798 (see chart).

SPRITE COLORS:

To make sprite 0 WHITE, type: POKE V+39,1 (use COLOR POKE SET-
TING shown in chart, and INDIVIDUALCOLOR CODES shown below):

0- BLACK
1-WHITE
2-RED
3-CYAN

4-PURPLE
5-GREEN
6-BLUE
7 - YELLOW

8-0RANGE 12-MED. GREY
9-BROWN 13-LT. GREEN
10-LT. RED 14-LT. BLUE

ll-DARK GREY15-LT. GREY

MEMORY LOCATION:

You must "reserve" a separate 64-BYTE BLOCK of numbers in the
computer's memory for each sprite of which 63 BYTESwill be used for
sprite data. The memory settings shown below are recommended for
the "sprite pointer" settings in the chart above. Each sprite will be
unique and you'll have to define it as you wish. To make "all sprites
exactly the same, point the sprites you want to look the same to the
same register for sprites.

DIFFERENT SPRITE POINTER SETTINGS:

These sprite pointer settings are RECOMMENDATIONSONLY.
Caution: you can set your sprite pointers anywhere in RAM memory

but if you set them too "low" in memory a long BASIC program may
overwrite your sprite data, or vice versa. To protect an especially LONG
BASIC PROGRAM from overwriting sprite data, you may want to set the
sprites at a higher area of memory (for example, 2040,192 for sprite 0
at locations 12288 to 12350 . . . 2041,193 at locations 12352 to 12414

for sprite 1 and so on . . . by adjusting the memory locations from which
sprites get their "data," you can define as many as 64 different sprites
plus a sizable BASIC program. To do this, define several sprite "shapes"
in your DATAstatements and then redefine a particular sprite by chang-
ing the "pointer" so the sprite you are using is "pointed" at different
areas of memory containing different sprite picture data. See the "Danc-
ing Mouse" to see how this works. If you want two or more sprites to
have THE SAME SHAPE (you can still change position and color of each
sprite), use the same sprite pointer and memory location for the sprites
you want to match (for example, you can point sprites 0 and 1 to the
same location by using POKE 2040,192 and POKE 2041, 192).

178 PROGRAMMING GRAPHICS

PRIORITY:

Priority means one sprite will appear to move "in front of" or "behind"

another sprite on the display screen. Sprites with more priority always

appear to move "in front of" or "on top of" sprites with less priority. The
rule is that lower numbered sprites have priority over higher numbered

sprites. Sprite 0 has priority over all other sprites. Sprite 7 has no priority

in relation to the other sprites. Sprite 1 has priority over sprites 2-7, etc.

If you put two sprites in the same position, the sprite with the higher

priority will appear IN FRONT OF the sprite with the lower priority. The
sprite with lower priority will either be obscured, or will "show through"

(from "behind") the sprite with higher priority.

USING MULTI-COLOR:

You can create multi-colored sprites although using multi-color mode
requires that you use PAIRSof pixels instead of individual pixels in your
sprite picture (in other words each colored "dot" or "block" in the sprite
will consist of two pixels side by side). You have 4 colors to choose from:
Sprite Color (chart above), Multi-Color I, Multi-Color 2 and "Background
Color" (background is achieved by using zero settings which let the
background color "show through"). Consider one horizontal 8-pixel block
in a sprite picture. The color of each PAIRof pixels is determined accord-
ing to whether the left, right, or both pixels are solid, like this:

CD BACKGROUND (Making BOTH PIXELS BLANK (zero) lets the

INNER SCREEN COLOR (background) show

through.)

MULTI-COLOR 1 (Making the RIGHT PIXEL SOLID in a pair of
pixels sets BOTH PIXELS to Multi-Color 1.)

(Making the LEFTPIXEL SOLID in a pair of pixels
sets BOTH PIXELS to Sprite Color.)_ MULTI-COLOR 2 (Making BOTH PIXELS SOLID in a pair of pixels

sets BOTH PIXELSto Multi-Color 2.)

SPRITE COLOR

PROGRAMMING GRAPHICS 179

Look at the horizontal 8-pixel row shown below. This block sets the
first two pixels to background color, the second two pixels to Multi-Color
1, the third two pixels to Sprite Color and the fourth two pixels to Multi-
Color 2. The color of each PAIR of pixels depends on which bits in
each pair are solid and which are blank, according to the illustration
above. After you determine which colors you want in each pair of pixels,
the next step is to add the values of the solid pixels in the 8-pixel block,
and POKEthat number into the proper memory location. For example, if
the 8-pixel row shown below is the first block in a sprite which begins at
memory location 832, the value of the solid pixels is 16+8+2+1 = 27,
so you would POKE 832,27.

27

, 16 + 8 + 2 + l'

I 8 I 4 I 2 I 1 I

COLLISION:

You can detect whether a sprite has collided with another sprite by
using this line: IF PEEK(V+30)ANDX=XTHEN [insert action here]. This line
checks to see if a particular sprite has collided with ANY OTHERSPRITE,
where X equals 1 for sprite 0, 2 for sprite 1, 4 for sprite 2, 8 for sprite 3,
16 for sprite 4, 32 for sprite 5, 64 for sprite 6, and 128 for sprite 7. To
check to see if the sprite has collided with a "BACKGROUND CHAR-
ACTER" use this line: IF PEEK(V+3l)ANDX=XTHEN [insert action here].

180 PROGRAMMING GRAPHICS

USING GRAPHIC CHARACTERS IN DATA STATEMENTS

The following program allows you to .create Q.sprite using blanks and
solid circles (').in DATAstatements. The spr~te:and the num-
bers. POKEd .into the sprite data registers are displayed.

.:-BllilCIIiIII
18 PR!NT" ~ :FiJRI =8T063 : POKE832+ I .' 8 : HE)<:T
:;-~8GOSU:E:6iZ1000

.999 Et.m
6IZU,;I0€1DATA".......
613001 IIATA" GI1IiI..dill "
61,miZ12DATA" ,Ii.
6130103 DATA" 811I1111I'11I110
6012ltNDATI=t" .'IIII.iP8
613£11215DATA"
6013iZI6DATA" '1lilDiP....
6121131217DATA"
60808 DATA"...Ci.............
6(18£19 DA'TA "..............
6€11211121IIATA"111..'11I"111'.'Ii
612112111DATA" 11II...111... .
68tH2 DATA" " .
60813DATA"GI 1Ii1ill.
613014DATA" . ,... ..
60015 DATA" 011I. .
68016 DATA" II
613817DATA"
601318DfiTI"i"
68819 DATA"
61302121.DATA" ...
601£1(1 '11=53248: POKEV, 21313:POKEV+1.. 10121:POKEV+21, 1 :
POKEV+39,14:POKE2848,13
6~U 1215F.'OKE'y'+23, 1 : POKEV+29, 1
6121110 FOR I =(1T020 :.READA$: FORK=0T02 : T=13: FOF:J=1<n07 : B=13
612114121IFtlID$(,A$.. J+K:+:8+1.. 1)="."THEHB=l
6015121 T=T+B*2'f'(7-~T): HEXT: PRIHTT.; : POKE832+I*:;:HK, T:
NE:>::T : PFH t-n : t'IE>':T

612121210 RETUR:t.1

PROGRAMMING GRAPHICS .181

:INTRODUCTI.ON

Your Commodore. computer is equipped with .one of the most sophisti-
catedele.ctronic music synthesizers available on any computer. It comes
complete with .three voices, totally .addressable, ATTACK/DECAY/
5USTAIN/RELEASE(ADSR), filtering, modulation, and "white noise." All
.of these .capabilities are directly available for you through a few easy to
use "BASIC and/or assembly language 'statements .and functions. This
means that you can make very ..complex sounds and songs using pro-
grams ,that are :relatively simple to design.

This section of your. Programmers :Reference Guide has been created
to help you explore all the .capabilities of the 6581 "SID" chip, the sound
and music synthesizer inside your Commodore computer. We~1Iexplain
both the theory behind musical ideas and the practical aspects of .turn-
ing those ideas into real finished songs on your .Commodore computer.

You need not be .an experienced programmer nor a music expert to
achieve exciting results from the music synthesizer. This section Cisfull of
programming examples with complete explanations to get you started.

You get to .the sound generator by POKEing into specified memory
locations. A full list of the locations used is provided in .Appendix O. We
will go through each concept, step by step. By the end you should be
able to create an almost :infinite variety of sounds, and 'be. ready to
perform experiments. with sound on your own.

'Each .section of this chapter begins by giving you an example and a
fuliline-by-line'description :of each program, which will show you how to
use the characteristic being discussed. The technical explanation is for
you to read whenever you are curious about what is actually going on.

The workhorse of your sound programs is the POKE'statement. POKE
sets the indicated. memory location (MEM) equal .to a.:specified value
~NUM).

.POKE MEM,NUM

The memory locations (MEM) used for music synthesis start at 54272
($D400) in the Commodore 64. The memory locations 54272 '10 54296
inclusive .are the POKE Jocotions you need to remember when you're
using the 6581 (SID) chip'register map. Another way to use the locations
above is.-to remember only location 54272 and then add a number from
'0 through 24 to it. By doing this you can -POKEall the locations from
54272 to 54296 that you need from the SID chip. The numbers. (NUM)

184 PROGRAMMING SOUND AND MUSIC

that you use in your POKE statement must be between 0 and 255,
inclusive.

When you've had a little more practice with making music, then you
can get a little more involved, by using the PEEKfunction. PEEKis a
function that is equal to the value currently in the indicated memory
location.

X=PEEK(MEM)

The value of the variable X is set equal to the current contents of mem-
ory location MEM.

Of course, your programs include other BASIC commands, but for a
full explanation of them, refer to the BASIC Statements section of this
manual.

Let's jump right in and try a simple program using only one of the
three voices. Computer ready? Type NEW, then type in this program,
and save it on your Commodore DATASSETTETMor disk. Then, RUN it.

EXAMPLE PROGRAM 1:

5 ~:;=54272
10 FORL=STOS+24:POKEL,0:NEXT:REM CLEAR SOUND CHIP
20 POKE:::+5, 9 :PC1f(ES+6., °

30 POKES+24,15 :REM SET VOLUME TO
r'tA:":I r1Ur1
40 READHF, LF .' DR
50 IFHF(0THENEND
60 POKES+l,HF:POKES,LF
70 POKES+4., ::;::::;:

80 FORT=ITODR:NEXT
90 POKES+4,32:FORT=IT050:NEXT
100 CiOT04r21

110 DATA25,177,250,28,214,250
120 DATA25J177J250J25J177J250
130 DATA25,177,125,28,214,125
140 DATA32,94,750,25,177,250
150 DATA28,214,250,19,63,250
160 DATAI9,63,250,19,63,250
170 DATA21.154,63,24,63,63
180 DATA25,177,250,24,63,125
190 DATA19,63,250,-1,-1,-1

Here's a line-by-line description of the program you've just typed in.
Refer to it whenever you feel the need to investigate parts of the pro-
gram that you don't understand completely.

PROGRAMMING SOUND AND MUSIC 185

LINE-BY-LINE EXPLANATIONOF EXAMPLEPROGRAM 1:

VOLUME CONTROL

Chip register 24 contains the overall volume control. The volume can
be set anywhere between ° and 15. The other four bits are used for
purposes we'll get into later. For now it is enough to know volume is 0 to
15. Look at line 30 to see how it's set in Example Program 1.

FREQUENCIES OF SOUND WAVES

Sound is created by the movement of air in waves. Think of throwing
a stone into a pool and seeing the waves radiate outward. When similar
waves are created in air, we hear it. If we measure the time between
one peak of a wave and the next, we find the number of seconds for

one cycle of the wave (n = number of seconds). The reciprocal of this
number (1/n) gives you the cycles per second. Cycles per second are
more commonly known as the frequency. The highness or lowness of a
sound (pitch) is determined by the frequency of the sound waves pro-
duced.

The sound generator in your Commodore computer uses two locations
to determine the frequency. Appendix E gives you the frequency values
you need to reproduce a full eight octaves of musical notes. To create a

186 PROGRAMMING SOUND AND MUSIC

Line(s) Description

5 Set S to start of sound chip.
10 Clear all sound chip registers.
20 Set Attack/Decay for voice 1 (A=0,D=9). I

Set Sustain/Release for voice 1 (S=O,R=O).
30 Set volume at maximum.
40 Read high frequency, low frequency, duration of note.
50 When high frequency less than zero, song is over.
60 Poke high and low frequency of voice 1.
70 Gate sawtooth waveform for voice 1.
80 Timing loop for duration of note.
90 Release sawtooth waveform for voice 1.
100 Return for next note.
110- 180 Data for song: high frequency, low frequency, duration

(number of counts) for each note.
190 .Last note of song and negative 1s signaling end of song.

frequency other than the ones listed in the note table use "Fout" (fre-
quency output) and the following formula to represent the frequency (Fn)
of the sound you want to create. Remember that each note requires
both a high and a low frequency number.

Fn = Fout/.06097

Once you've figured out what Fn is for your "new" note the next step is
to create the high and low frequency values for that note. To do this you
must first round off Fn so that any numbers to the right of the decimal
point are left off. You are now left with an integer value. Now you can
set the high frequency location (Fhi)by using the formula Fhi=INT(Fn/256)
and the low frequency location (Flo) should be Flo=Fn-(256*Fhi).

At this point you have already played with one voice of your compu-
ter. If you wanted to stop here you could find a copy of your favorite
tune and become the maestro conducting your own computer orchestra
in your "at home" concert hall.

USING MULTIPLE VOICES

Your Commodore computer has three independently controlled voices
(oscillators). Our first example program used only one of them. Later on,
you'll learn how to change the quality of the sound made by the voices.
But right now, let's get all three voices singing.

This example program shows you one way to translate sheet music for
your computer orchestra. Try typing it in, .and then SAVE it on your
DATASSETTeMor disk. Don't forget to type NEW before typing in this
program.

EXAMPLEPROGRAM2:
10 8=54272: FORL=STOS+24: POKEL,10:NE>(T
20 D1MH(2,200),L(2,200),C(2,200)
30 DII1FQ(11)
40 V(0)=17:V(1)=65:V(2)=33
50 POKES+10,8:POKES+22,128:POKES+23,244
60 FOR1=0T011:READFQ(1):NEXT
1'21'21FORK=0T02
110 1=0
120 READt'IM
130 IFNM=0THEN250
140 WA=V(K):WB=WA-l:1FNM(0THENNM=-NM:WA=0:WB=0
150 DR%=NM/128:0C%=(NM-128*DR%)/16
160 NT=NM-128~DR%-16*OC%
170 FR=FQ(tH)

PROGRAMMINGSOUND ANDMUSIC 187

180 IFOC%=7THEN200
190 FORJ=6TOOCr.STEP-1:FR=FR/2:NEXT
200 HF%=FR/256:LF%=FR-256*HFr.
210IFDRr.=1THENHCK,I)=HFr.:LCK,I)=LFr.:C<.K,I)=WA:
I=I+l:00TOI20
220 FORJ=ITODR%-l:HCK,I)=HFr.:L(K,I)=LF%:C(K,I)=WA:
I=I+l:NEXT
230 H(K,I)=HFr.:L(K,I)=LF%:CCK,I)=WB
240 I=I+l:00T0120
250 IFI)IMTHENIM=I
260 NEXT
500 POKES+5,0:POKES+6,240
510 POKES+12,85:POKES+13,133
520 POKES+19,10:POKES+20, 197
530 POKES+24,31
540 FORI=0TOIM
550 POKES,L(0,I):POKES+7,LC1,I):POKES+14,L(2,I)
560 POKES+l,H(0,I):POKES+8,H(1,I):POKES+15,H(2,I)
570 POKES+4,C(0,I):POKES+ll,CCl,I):POKES+18,C(2,I)
580 FORT=lT080:NEXT:NEXT
590 FORT=lT0200:NEXT:POKES+24,0
600 DATA34334,36376,38539,40830
610 DATA43258,45830,48556,51443
620 DATA54502,57743,61176,64814
1000 DATA594,594,594,596,596
1010 DATA1618,587,592,587,585,331,336
1020 DATA1097,583,585,585,585,587,587
1030 DATA1609,585,331,337,594,594,593
1040 DATA1618,594,596,594,592,587
1050 DATA1616,587,585,331,336,841,327
1060 DATA1607
1999 DATA0
2000 DATA583,585,583,583,327,329
2010 DATA1611,583,585,578,578,578
2020 DATA196,198,583,326,578
2030 DATA326,327,329,327,329,326,578,583
2040 DATA1606,582,322,324,582,587
2050 DATA329,327,1606,583
2060 DATA327,329,587,331,329
2070 DATA329,328,1609,578,834
2080 DATA324,322,327,585,1602
2999 DATA0
3000 DATA567,566,567,304,306,308,310
3010 DATA1591,567,311,310,567
3020 DATA306,304,299,308
3030 DATA304,171,176,306,291,551,306,308
3040 DATA310,308,310,306,295,297,299,304
3050 DATA1586,562,567,310,315,311
3060 DATA308,313,297
3070 DATA1586,567,560,311,309
3080 DATA308,309,306,308
3090 DATA1577,299,295,306,310,311,304
3100 DATA562,546, 1575
3999 DATA0

188 PROGRAMMING SOUND AND MUSIC

Here is a line-by-line explanation of Example .Program 2. For now, we
are interested in how the thre.e voices .are controlled.

LlNE-BY-LiNEEXPLANATIONOF EXAMPLEPROGRAM 2:

10

20

30
40
50

60
100
no
120
130
140

150
160
170
180
190
200
210

220

230

240
250
260
500

line(s) Description

Set S equal to start of sound chip and clear all. sound
chip registers.

Dimension arrays to contain activity of song, l/l6th of a
measure per lo.cation.
Dimension array to contain base frequency for each note.
Store waveform control byte for each voice.
Set high pulse width for voice 2.
Set high frequency for filter cutoff.
Set resonance for filter and filter voice 3.

Read in base frequency for each note.
Begin decoding loop for each voice.
Initialize pointer to activity array.
Read coded note'.

If coded note is zero, then r:'ext ,voice.
Set waveform controls. to proper voice.
If silence, set waveform controls to. O.
Decode duration and octave.
Decode note.

Get base frequency for this note.I
If highest octave, skip division loop.
Divide base frequency by 2 appropriate number of times.
Get high and low frequency bytes.

If sixteenth no.te, set activity array: high frequency, low
frequency, and: waveform control (voice on).
For all but last beat of note, set activity array: high
frequency, low frequency, waveform control (voice on).
For last be.at of note, set activity array: high frequency,
low frequency, waveform control (voice off).
Increment pointer to activity array. Get next note.
If longer t~an before, reset number of activities.
Go back for next voice.

Set Attack/Decay for voicel (A=O, D=O)..
Set Sustain/Release for voice 1 (S=15, R=O).

PROGRAMMING SOUND AND MUSIC 189

The values used in the data statements were found by using the note
table in Appendix E and the chart below:

190 PROGRAMMING SOUND AND MUSIC

line(s) Description

510 Set Attack/Decay for voice 2 (A=5, D=5).
Set Sustain/Release for voice 2 (S=8, R=5).

520 Set Attack/Decay for voice 3 (A=O, D= 10).
Set Sustain/Release for voice 3 (S=12, R=5).

530 Set volume 15, low-pass filtering.
540 Start loop for every 1/16th of a measure.
550 POKE low frequency from activity array for all voices.
560 POKE-high frequency from activity array for all voices.
570 POKE-waveform control from activity array for all voices.
580 Timing loop for 1/16th of a measure and back for next

1/16th measure.
590 Pause, then turn off volume.
600-620 Base frequency data.
1000-1999 Voice 1 data.
2000-2999 Voice 2 data.
3000-3999 Voice 3 data.

NOTE TYPE DURATION

1/16 128
1/8 256

DOTTED1/8 384
1/4 512

1/4+ 1/16 640
DOTTED 1/4 768

1/2 1024
1/2+ 1/16 1152
1/2+ 1/8- 1280

DOTTED 1/2 1536
WHOLE 2048

The. note number from the no.te table is added to the duration above.
Then each note can be entered using only one number which is decoded
by your program. This is only one method of coding note values. You
may be able to come up with one with which you are more comfortable.
The formula used here for encoding a note is as follows:

1) The duration (number of 1/16ths of a measure) is multiplied by 8.
2) The result of step 1 is added to the octave you've chosen (0-7).
3) The result of step 2 is then multiplied by 16.
4) Add your note choice (0- 11) to the result of the operation in step

3.

In other words:

««D*8)+O) *16)+N)

Where D = duration, 0 = octave, and N = note
A silence is obtained by using the negative of the duration number

(number of 1/16ths of a measure * 128).

CONTROLLING MULTIPLEVOICES

Once you have gotten used to using more than one voice, you will find
that the timing of the three voices needs to be coordinated. This is ac-
complished in this program by:

1) Divide each musical measure into 16 parts.
2) Store the events that occur in each 1/16th measure interval in three

separate arrays.

The high and low frequency bytes are calculated by dividing the fre-
quencies of the highest octave by two (lines 180 and 190). The
waveform control byte is a start signal for beginning a note or continu-
ing a note that is already playing. It is a stop signal to end a note. The
waveform choice is made once for each voice in line 40.

Again, this is only one way to control multiple voices. You may come
up with your own methods. However, you should now be able to take

any piece of sheet music and figure out the notes for all three voices.

PROGRAMMING SOUND AND MUSIC 191

CHANGING WAVEFORMS

The tonal quality of a sound is called the timbre. The timbre of a
sound is determined primarily by its "waveform." If you remember the
example of throwing a pebble into the water you know that the waves
ripple evenly across the pond. These waves almost look like the first
sound wave we're going to talk 'about, the .sinusoidal wave, or sine
wave for short (shown below).

To make what we're talking about a bit more practical, let's go back
to the first example program to investigate different waveforms. The
reason for this is that you can hear the changes more easily using only
one voice. LOADthe first .music program that you typed in earlier, from
your DATASSffiE™ or disk, and RUN it again. That program is using the
sawtooth waveform (shown here)

from the 6581 SID chip's sound generating device. Try changing the note
start number in line 70 from 33 to 17 and the note stop nlJmber in line 90
from 32 to 16. Your program should now look like this:

192 PROGRAMMING SOUND .AND MUSIC

EXAMPLE PROGRAM3 (EXAMPLE1 MODIFIED):

5 ~3=5427:;-~
10 FORL=STOS+24:POKEL..0:NEXT
20 POKES+5..9:POKES+6..0
::::121 POf<E~:;+24,15
40 REAIIHF, LF.. IIF.:

50 IFHF<0THENEND
60 POKES+l..HF:POKES..LF
70 POKE:::+4., 17

80 FORT=lTODR:NEXT
90 POKES+4..16:FORT=IT050:NEXT
100 130T040
110 DATA25,177..250..28,214..250
120 DATA25..177..250..25..177..250
130 DATA25.. 177.. 125..28..214.. 125

140 DATA32..94.. 750.. 25.. 177,250

150 DATA28,214..250..19,63,250
160 DATAI9,63..250..19..63..250
170 DATA21 ,154,63..24..63,63
180 DATA25,177..250,24,63, 125
190 DATAI9,63..250..-1,-I,-1

Now RUN the program.

Notice how the sound quality is different, less twangy, more hollow.
That's because we changed the sawtooth waveform into a triangular
waveform (show below).

The third musical waveform is called a variable pulse wave (shown

below).

PULSE WIDTH

PROGRAMMING SOUND AND MUSIC 193

It is a rectangular wave and you determine the length of the pulse
cycle by defining the proportion of the wave which will be high. This is
accomplished for voice 1 by using registers 2 and 3: Register 2 is the low
byte of the pulse width (Lpw= 0 through 255). Register 3 is the high 4
bits (Hpw = 0 through 15).

Together these registers specify a 12-bit number for your pulse width,
which you can determine by using the following formula:

The pulse width is determined by the following equation:

PWout = (PWn/40.95) %

When PWn has a value of 2048, it will give you a square wave. That
means that register 2 (Lpw)= 0 and register 3 (Hpw) = 8.

Now try adding this line to your program:

15 POKES+3,8:POKES+2,O

Then change the start number in line 70 to 65 and the stop number in
line 90 to 64, and RUN the program. Now change the high pulse width
(register 3 in line 15) from an 8 to a 1. Notice how dramatic the differ-
ence in sound quality is?

The last waveform available to you is white noise (shown here).

It is used mostly for sound effects and such. To hear how it sounds, try
changing the start number in line 70 to 129 and the stop number in line
90 to 128.

UNDERSTANDING WAVEFORMS

When a note is played, it consists of a sine wave oscillating at the
fundamental frequency and the harmonics of that wave.

194 PROGRAMMING SOUND AND MUSIC

The fundamental frequency defines the overall pitch of the note.

Harmonics are sine waves having frequencies which are integer multi-
ples of the fundamental frequency. A sound wave is the fundamental

frequency and all of the harmonics it takes to make up that sound.

FUNDAMENTAL (1ST HARMONIC)

2ND HARMONIC

In musical theory let's say that the fundamental frequency is harmonic
number 1. The second harmonic has a frequency twice the fundamental
frequency, the third harmonic is three times the fundamental frequency,
and so on. The amounts of each harmonic present in a note give it its
timbre.

An acoustic instrument, like a guitar or a violin, has a very compli-
cated harmonic structure. In fact, the harmonic structure may vary as a
single note is played. You have already played with the waveforms
available in your Commodore music synthesizer. Now let's talk about
how the harmonics work with the triangular, sawtooth, and rectangular
waves.

A triangular wave contains only odd harmonics. The amount of each
harmonic present is proportional to the reciprocal of the square of the
harmonic number. In other words harmonic number 3 is 1/9 quieter than
harmonic number 1, because the harmonic 3 squared is 9 (3 X 3) and
the reciprocal of 9 is 1/9.

As you can see, there is a similarity in shape of a triangular wave to a
sine wave oscillating at the fundamental frequency.

Sawtooth waves contain all the harmonics. The amount of each har-

monic present is proportional to the reciprocal of the harmonic number.
For example, harmonic number 2 is 1/2 as loud as harmonic number 1.

The square wave contains odd harmonics in proportion to the recip-
rocal of the harmonic number. Other rectangular waves have varying
harmonic content. By changing the pulse width, the timbre of the sound
of a rectangular wave can be varied tremendously.

PROGRAMMINGSOUNDAND MUSIC 195

By choosing carefully the waveform used, you can start with a har-
monic structure that looks somewhat like the sound you want. To refine
the sound, you can add another aspect of sound quality available on
your Commodore 64 called filtering, which we'll discuss later in this
section.

THE ENVELOPE GENERATOR

The volume of a musical tone changes from the moment you first hear
it, all the way through until it dies out and you can't hear it anymore.
When a note is first struck, it rises from zero volume to its peak volume.
The rate at which this happens is called the ATTACK.Then, it falls from
the peak to some middle-ranged volume. The rate at which the fall of
the note occurs is called the DECAY. The mid-ranged volume itself is
called the SUSTAIN level. And finally, when the note stops playing, it
falls from the SUSTAIN level to zero volume. The rate at which it falls is

called the RELEASE.Here is a sketch of the four phases of a note:

SUSTAINLEVEL--

A

Each of the items mentioned above give certain qualities and restric-
tions to a note. The bounds are called parameters.

The parameters ATTACKIDECAY/SUSTAIN/RELEASEand collectively
called ADSR, can be controlled by your use of another set of locations in
the sound generator chip. LOADyour first example program again. RUN
it again and remember how it sounds. Then, try changing line 20 so the
program is like this:

196 PROGRAMMING SOUND AND MUSIC

EXAMPLEPROGRAM 4 (EXAMPLE 1 MODIFIED):

5 :3=54272

10 FORL~STOS+24:POKEL,0:NEXT
20 POKE:::;+5., :;:::::: F'OKES+6, 195
3121 PCW:ES+:;::4, 15
40 F.:EADHF" LF, DR
50 IFHF<0THENEND
60 POKES+l,HF:POKES,LF
71<:1POKES+4" 33
80 FORT81TODR:NEXT
90 POKES+4,32:FORT=IT050:NEXT
100 GOT040 .

110 DATA25,177,250,28,214,250
12121DATli25, 177, 251::1"25., 177., 2512:1
130 DATA25,177,125,28,214, 125
140 DATA32,94,750,25, 177,250
150 DATA28,214,250,19~63,250
160 DATAI9,63~250,19,63,250
170 DATA21,154,63,24,63,63
180 DATA25, 177,250,24,63,125
190 DATAI9,63,250,-I,-I,-1

Registers 5 and 6 define the ADSRfor voice 1. The ATTACKis the high
nybble of register 5. Nybble. is half a byte, in other words the lower 4 or

higher 4 on/off locations (bits)'in .each register. DECAYis the low nybble.
You can pick any number 0 through 15 for ATTACK,multiply it by 16 and
add to any number 0 through 15 for DECAY.The values that correspond
to these numbers are listed below.

SUSTAIN level is the high nybble of register 6. It can be 0 through, 15.
It defines the proportion of the peak volume that the SUSTAIN level will
be. RELEASE rate is the low nybble of register 6.

PROGRAMMINGSOUND,ANDMUSIC 197

Here are the meanings of the values for ATTACK, DECAY, and RE-
LEASE:

Here are a few sample settings to try in your example program. Try
these and a few of your own. The variety of sounds you can produce is

astounding! For a violin type sound, try changing line 20 to read:

20 POKES+5,88:POKES+6,89:REM A=5;D=8;S=5;R=9

Change the waveform to triangle and get a xylophone type sound by
using these lines:

20 POKES+5,9:POKES+6,9:REM A=0;D=9;S=0;R=9
70 POKES+4,17
90 POKES+4,16: FORT=1T050:NEXT

.198 PROGRAMMING SOUND AND MUSIC

VALUE ATTACK RATE(TIME/CYCLE) DECAY/RELEASE RATE(TIME/CYCLE)

0 2 ms 6 ms

1 8 ms 24 ms
2 16 ms 48 ms

3 24 ms 72 ms

4 38 ms 114 ms

5 56 ms 168 ms
6 68 ms 204 ms
7 80 ms 240 ms
8 100 ms 300 ms
9 250 ms 750 ms

10 500 ms 1.5 s

11 800 ms 2.4 s

12 1 s 3 s
13 3 s 9 s
14 5 s 15 s
15 8 s 24 s

Change the waveform to square and try a ,piano type sound with these
lines:

15 POKES+3,8:POKES+2,O
20 POKES+5,9:POKES+6,O: REMA=0;D=9;S=0;R=0
70 POKES+4,65
90 POKES+4,64:FORT=lT050:NEXT

The most exciting sounds are those unique to the music synthesizer
itself, ones that do not attempt to mimic acoustic instruments. For
example try:

20 POKES+5,144:POKES+6,243:REM A=9;D=0; S=15;R=3

FILTERING

The harmonic content of a waveform can be changed by using a
filter. The SID chip is equipped with three types of filtering. They can be
used separately or in combination with one another. Let's go back to the
sample program you've been using to play with a simple example that
uses a ,filter. There are several filter controls to set.

You add line 15 in the program to set the cutoff frequency of the filter.
The cutoff frequency is the reference point for the filter. You SETthe high
and low frequency cutoff points in registers 21 and 22. To turn ON the
filter for voice 1, POKE register 23.

Next change line 30 to show that a high-pass filter will be used (see
the SID register map).

PROGRAMMING SOUND AND MUSIC 199

EXAMPLEPROGRAM5 (EXAMPLE1 MODIFIED):

10 FORL=STOS+24:POKEL,8:NEXT
15 POKES+22,128:POKES+21,0:POKES+23,1
20 POKES+5,9:POKES+6,0
3el POKES+24, 79
40 READHF, LF .'DF.:
50 IFHF<0THENEND
60 POKES+l,HF;POKES,LF
70 POKE::;+4, 33
80 FORT=ITODR:NEXT
98 POKES+4, 32: FORT= 1T050 : NE:-:T
11210 00T04121

110 DATA25,177,250,28,214,250
120 DATA25, 177,250,25, 177,250
131<:1DATA25.. 177.. 125,28..214.,125
14121DATA32., 94, 7S12I,25, 177, 25121
150 DATA28,214,250, 19,63,250
160 DATA19,63,250,19,63,250
178 DATA21 , 154,63,24,63,63
180 DATA25,177,250,24,63, 125
19121 DATAI9,63,258,-1,-1,-1

Try RUNning the program now. Notice the lower tones have had their

volume cut down. It makes the overall quality of the note sound tinny.
This is because you are using a high-pass filter which attenuates (cuts
down the level of) frequencies below the specified cutoff frequency.

There are three types of filters in your Commodore computer's SID
chip. We have been using the high-pass filter. It will pass all the fre-
quencies at or above the cutoff, while attenuating the frequencies below
the cutoff.

Q
III
II)
II)""
Q.
..
Z
:;)
o
:;""

FREQUENCY

The SID chip also has a low-pass filter. As its name implies, this filter
will pass the frequencies below cutoff and attenuate those above.

200 PROGRAMMING SOUND AND MUSIC

Q
W'"'"
<I:II.
I-Z
:>o
::;:
<I:

Finally, the chip is equipped with a bandpass filter, which passes a
narrow band of frequencies around the cutoff, and attenuates all
others.

Q
W'"'"
<I:II.
I-
Z
:>o
::;:
<I:

The high- and low-pass filters can be combined to form a notch reiect
filter which passes frequencies away from the cutoff while attenuating
at the cutoff frequency.

Q
III'"'"<I:II.
I-Z
:>
o
::;:
<I:

CUTOFF

FREQUENCY

PROGRAMMING SOUND AND MUSIC 201

Register 24 determines which type filter you want to use. This is in
addition to register 24's function as the overall volume control. Bit 6
controls the high-pass filter (0 = off, 1 = on), bit 5 is the bandpass

filter, and bit 4 is the low-pass filter. The low 3 bits of the cutoff fre-
quency are determined by register 21 (let) (let = 0 through 7). While the
8 bits of the high cutoff frequency are determined by register 22 (Hct)
(Hct = 0 through 255).

Through careful use of filtering, you can change the harmonic struc-
ture of any waveform to get just the sound you want. In addition, chang-
ing the filtering of a sound as it goes through the ADSR phases of its life
can produce interesting effects.

ADVANCED TECHNIQUES

The SID chip's parameters can be changed dynamically during a note
or sound to create many interesting and fun effects. In order to make
this easy to do, digitized outputs from oscillator three and envelope
generator three are available for you in registers 27 and 28, respec-
tively.

The output of oscillator 3 (register 27) is directly related to the
waveform selected. If you choose the sawtooth waveform of oscillator 3,
this register will present a series of numbers incremented (increased
step by step) from 0 to 255 at a rate determined by the frequency of
oscillator 3. If you choose the triangle waveform, the output will incre-
ment from 0 up to 255, then decrement (decrease step by step) back
down to o. If you choose the pulse wave, the output will jump back-
and-forth between 0 and 255. Finally, choosing the noise waveform will
give you a series of random numbers. When oscillator 3 is used for
modulation, you usually do NOT want to hear its output. Setting bit 7 of
register 24 turns the audio output of voice 3 off. Register 27 always
reflects the changing output of the oscillator and is not affected in any
way by the envelope (ADSR) generator.

202 PROGRAMMING SOUND AND MUSIC

Register 25 gives you access to the output of the envelope generator
of oscillator 3. It functions in much the same fashion that the output of
oscillator 3 does. The oscillator must be turned on to produce any output
from this register.

Vibrato (a rapid variation in frequency) can be achieved by adding
the output of oscillator 3 to the frequency of another oscillator. Example
Program 6 illustrates this idea.

EXAMPLE PROGRAM 6:

1121 8=54272
20 FORL=0T024:POKES+L,0:NEXT
31Z1 F'CiKES+3, 8

40 POKES+5,41:POKES+6,89
50 F'OKES+14..117
60 POKE::::+18., 16

70 POKE:;:;+24., 143

:3121 READFf<:, DR

90 IFFR=0THENEND
100 POKES+4,65
110 FORT=lTODR*2
12121 FQ=FR+PEEK 0:8+27 >/2
130 HF=INT(FQ/256>:LF=FQAND255
140 F'OKES+0,LF:POKES+l,HF
150 NE::<:T

160 POKES+4., 64
170 GOT080
500 DATA4817,2,5103,2,5407,2
510 DATA8583,4,5407,Z,8583,4
520 DATA5407,4,8583,12,9634,2
530 DATAI0207,2,10814,2,8583,2
540 DATA9634,4,10814,2,8583,2
550 DATA9634,4,8583,12
56121 DATI"10.,(I

Here is a line-by-line explanation of Example Program 6:

PROGRAMMINGSOUND AND MUSIC 203

LlNE-BY-LiNEEXPLANATIONOF EXAMPLEPROGRAM 6:

A wide variety of sound effects can also be achieved using dynamic
effects. For example, the following siren program dynamically changes
the frequency output of oscillator 1 when it's based on the output of
oscillator 3's triangular wave:

204 PROGRAMMING SOUND AND MUSIC

LinesCs) Description

10 Set S to beginning of sound chip.
20 Clear all sound chip locations.
30 Set high pulse width for voice 1.
40 Set Attack/Decay for voice 1 (A=2, D=9).

Set Sustain/Release for voice 1 (S=5, R=9).
50 Set low frequency for voice 3.
60 Set triangle waveform for voice 3.
70 Set volume 15, turn off audio output of voice 3.
80 Read frequency and duration of note.
90 If frequency equals zero, stop.
100 POKEstart pulse waveform control voice 1.
110 Start timing loop for duration.
120 Get new frequency using oscillator 3 output.
130 Get high and low frequency.
140 POKE high and low frequency for voice 1.
150 End of timing loop.
160 POKE stop pulse waveform control voice 1.
170 Go back for next note.
500-550 Frequencies and durations for song.
560 Zeros signal end of song.

EXAMPLE PROGRAM7:

10 8=54272
20 FORL=0T024=POKES+L,O=NEXT
30 POKES+14,5
40 POKES+18,16
50 POKES+3,1
60 POKES+24,143
70-POKES+6,240
80 POKES+4,65
90 FR=5389
100
110
120
130
140
150

FORT=lT0200
FQ=FR+PEEK(S+27).3.5
HF=INT(FQ/256)=LF=FQ-HFI256
POKES+0,LF=POKES+l,HF
NEKT
POKES+24,0

Here is a line-by-line explanation of Example Program 7:

LlNE-BY-LiNEEXPLANATIONOF EXAMPLEPROGRAM 7:

PROGRAMMING SOUND AND MUSIC 205

Line(s) Description

10 Set S to start of sound chip.
20 Clear sound chip registers.
30 Set low frequency of voice 3.
40 Set triangular waveform voice 3.
50 Set high pulse width for voice 1.
60 Set volume 15, turn off audio output of voice 3.
70 Set Sustain/Release for voice 1 (S= 15, R=O).
80 POKE start pulse waveform control voice 1.
90 Set lowest -frequency for siren.
100 Begin timing loop.
110 Get new frequency using output of oscillator 3.
120 Get high and low frequencies.
130 POKE high and low frequencies for voice 1.
140 End timing loop.
150 Turn off volume.

The noise waveform can be used to provide a wide range of sound
effects. This example mimics a hand clap using a filtered noise
waveform:

EXAMPLE PROGRAM 8:

110 8=54272

210 FORL=eT024:POKES+L,e:NEXT
310 POKES+0,24iZ1:POKES+1,33
410 POKE8+5,8
510 POI(ES+22., 11214

610 POf(ES+23, 1
710 POKES+24,79
810 FORN=1T015
90 POKES+4,129
1010 FORT=1T0250:NEXT:POKES+4,128
1110 FORT= 1T030 :t.jE:.:T:t~E>::T

12121 POKES+24,1O

Here is a line-by-line explanation of Example Program 8:

LlNE-BY-LiNEEXPLANATION OF EXAMPLEPROGRAM 8:

206 PROGRAMMING SOUND AND MUSIC

Line(s) Description

10 Set S to start of sound chip.
20 Clear all sound chip registers.
30 Set high and low frequencies for voice 1.
40 Set Attack/Decay for voice 1 (A=O, D=8).
50 Set high cutoff frequency for filter.
60 Turn on filter for voice 1.
70 Set volume 15, high-pass filter.
80 Count 15 claps.
90 Set start noise waveform control.
100 Wait, then set stop noise waveform control.
110 Wait, then start next clap.
120 Turn off volume.

SYNCHRONIZATION AND
RING MODULATION

The 6581 SID chip lets you create more complex harmonic structures
through synchronization or ring modulation of two voices.

The process of synchronization is basically a logical ANDing of two
wave forms. When either is zero, the output is zero. The following
example uses this process to create an imitation of a mosquito:

EXAMPLE PROGRAM 9:

10 8=54272
2121 FORL=0T024: POKES+L, 121: ~jEXT
3~~1 POKE:=:+ 1 , 1130
40 POKES+5,219
5121 POKE:=:+ 15., 28
60 POKES+24., 15
7121 POKES+4..19
8121 FORT=lT05000:NEXT
90 POKES+4., 18

1121121FORT=lT011Z11Z11Z1:NEXT:POKE8+24..0

Here is a line-by-line explanation of Example Program 9:

LlNE-BY-LiNE EXPLANATION OF EXAMPLE PROGRAM 9:

The synchronization feature is enabled (turned on) in line 70, where
bits 0,1, and 4 of register 4 are set. Bit 1 enables the syncing function
between voice 1 and voice 3. Bits 0 and 4 have their usual functions of

gating voice 1 and setting the triangular waveform.

PROGRAMMING SOUND AND MUSIC 207

Line(s) Description

10 Set S to start of sound chip.
20 Clear sound chip registers.
30 Set high frequency voice 1.
40 Set Attack/Decay for voice 1 (A= 13, D= 11).
50 Set high frequency voice 3.
60 Set volume 15.
70 Set start triangle, sync waveform control for voice 1.
80 Timing loop.
90 Set stop triangle, sync waveform control for voice 1.
100 Wait, then turn off volume.

Ring modulation (accomplished for voice 1 by setting bit 3 of register
4 in line 70 of the program below) replaces the triangular output of
oscillator 1 with a "ring modulated" combination of oscillators 1 and 3.
This produces non-harmonic overtone structures for use in mimicking bell
or gong sounds. This program produces a clock chime imitation:

EXAMPLE PROGRAM 10:

1121 8=54272
20 FORL=0T024:POKES+L,0:NEXT
30 POKES+l,130
40 POKES+5,9
50.POKES+15,30
60 POKES"+24,15
70 FORL=lT012:POKES+4,21
80 FORT=lT01000:NEXT:POKES+4,20
90 FORT=lT01000:NEXT:NEXT

Here is a line-by-line explanation of Example Program 10:

LlNE-BY-LiNE EXPLANATION OF EXAMPLE PROGRAM 10:

The effects available through the use of the parameters of your
Commodore 64's SID chip are numerous and varied. Only through ex-
perimentation on your own will you fully appreciate the capabilities of
your machine. The examples in this section of the Programmer's Refer-
ence Guide merely scratch the surface.

Watch for the book MAKING MUSIC ON YOUR COMMODORECOM-
PUTERfor everything from simple fun and games to professional-type
musical instruction.

208 PROGRAMMING SOUND AND MUSIC

Line(s) Description

10 Set S to start of sound chip.
20 Clear sound chip registers.
30 Set high frequency for voice 1.
40 Set Attack/Decay for voice 1 (A=O, D=9).
50 Set high frequency for voice 3.
60 Set volume 15.
70 Count number of dings, set start triangle, ring mod

waveform control voice 1.
80 Timing loop, set stop triangle, ring mod.
90 Timing loop, next ding.

WHAT IS MACHINE LANGUAGE?

At the heart of every microcomputer, is a central microprocessor. It's
a very special microchip which is the "brain" of the computer. The
Commodore 64 is no exception. Every microprocessor understands its
own language of instructions. These instructions are called machine lan-
guage instructions. To put it more precisely, machine language is the
ONLY programming language that your Commodore 64 understands. It
is the NATIVElanguage of the machine.

If machine language is the only language that the Commodore 64
understands, then how does it understand the CBM BASIC programming
language? CBM BASIC is NOT the machine language of the Commodore
64. What, then, makes the Commodore 64 understand CBM BASIC in-
structions like PRINT and GOTO?

To answer this question, you must first see what happens inside your
Commodore 64. Apart from the microprocessor which is the brain of the
Commodore 64, there is a machine language program which is stored in
a special type of memory so that it can't be changed. And, more impor-
tantly, it does not disappear when the Commodore 64 is turned off,

unlike a program that you may have written. This machine language
program is called the OPERATING SYSTEMof the Commodore 64. Your
Commodore 64 knows what to do when it's turned on because its
OPERATING SYSTEM(program) is automatically "RUN."

210 BASIC TO MACHINE LANGUAGE

The OPERATING SYSTEM is in charge of "organizing" all the memory

in your machine for various tasks. It also looks at what characters you
type on the keyboard and puts them onto the screen, plus a whole

number of other functions. The OPERATING SYSTEM can be thought of

as the "intelligence and personality" of the Commodore 64 (or any com-
puter for that matter). So when you turn on your Commodore 64, the

OPERATING SYSTEM takes control of your machine, and after it has
done its housework, it then says:

READY.
.

The OPERATING SYSTEM of the Commodore 64 then allows you to

type on the keyboard, and use the built-in SCREEN EDITOR on the Com-
modore 64. The SCREEN EDITOR allows you to move the cursor, DELete,
INSert, etc., and is, in fact, only one part of the operating system that is

built in for your convenience.
All of the commands that are available in CBM BASIC are simply

recognized by another huge machine language program built into your

Commodore 64. This huge program "RUNs" the appropriate piece of
machine language depending on which CBM BASIC command is being

executed. This program is called the BASIC INTERPRETER, because it

interprets each command, one by one, unless it encounters a command
it does not understand, and then the familiar message appears:

?SYNTAX ERROR

READY..
WHAT DOES MACHINE CODE LOOK LIKE?

You should be familiar with the PEEKand POKE commands in the CBM

BASIC language for changing memory locations. You've probably used

them for graphics on the screen, and for sound effects. Each memory
location has its own number which identifies it. This number is known as

the "address" of a memory location. If you imagine the memory in the
Commodore 64 as a street of buildings, then the number on each door

is, of course, the address. Now let's look at which parts of the street are
used for what purposes.

BASIC TO MACHINE LANGUAGE 211

SIMPLE MEMORY MAP OF THE COMMODORE64

212 BASIC TO MACHINE LANGUAGE

ADDRESS DESCRIPTION

0& 1 -6510 Registers.

2 -Start of memory.
up to: -Memory used by the operating system.
1023

1024

up to: -Screen memory.
2039

2040

up to: -SPRITE pointers.
2047

2048

up to: - This is YOUR memory. This is where your BASIC or
40959 machine language programs, or both, are stored.

40960

up to: -8K CBM BASIC Interpreter.
49151

49152

up to: -Special programs RAM area.
53247

53248

up to: -VIC-II.
53294

54272

up to: -SID Registers.
55295

55296
up to: -Color RAM.
56296

56320
up to: -110 Registers. (6526's)
57343

57344
up to: -8K CBM KERNALOperating System.
65535

If you don't understand what the description of each part of memory
means right now, this will become clear from other parts of this manual.

Machine language programs consist of instructions which mayor may
not have operands (parameters) associated with them. Each instruction
takes up one memory location, and any operand is contained in one or
.two locations following the .instruction.

In your BASIC programs, words like PRINTand GOTO do, in fact, only
take up one memory location, rather than one for each character of the
word. The contents of the location that represents a particular BASIC
keyword is called a token. In machine language, there are different
tokens for different instructions, which also take up just one byte (mem-
ory location =byte).

Machine language instructions are very simple. Therefore, each indi-
vidual instruction cannot achieve a great deal. Machine language in-
structions either change the contents of a memory location, or change
one of the internal registers (special storage locations) inside .the micro-
processor. The internal registers form the very basis of machine lan-
guage.

THE REGISTERS INSIDE THE6510 MICROPROCESSOR

THE ACCUMULATOR

This is THE most important register in the microprocessor. Various ma-

chine language instructions allow you to copy the c;:ontents of a memory
location into.the accumulator, copy the contents of the accumulator into
a memory location, modify the contents of the accumulator or some
other register directly, without affecting any memory. And the ac-
cumulator is the only register that has instructions for performing math.

THE X INDEX REGISTER

This is a very important register. There are instructions for nearly all of
the transformations you can make to the accumulator. But there are
other instructions for things that only the X register can do. Various ma-
chine language instructions allow you to copy the contents of a memory
location into the X register,copy the contents of the X register into a
memory location, and modify the contents of the X, or some other regis-
ter directly.

BASIC TO MACHINE LANGUAGE 213

THE Y INDEX REGISTER

This is a very important register. There are instructions for nearly all of

the transformations you can make to the accumulator, and the X regis-

ter. But there are other instructions for things that only the Y register can
do. Various machine language instructions allow you to copy the con-

tents of a memory location into the Y register, copy the contents of the Y
register into a memory location, and modify the contents of the Y, or

some other register directly.

THE STATUS REGISTER

This register consists of eight "flags" (a flag = something that indi-
cates whether something has, or has not occurred).

THE PROGRAM COUNTER

This contains the address of the current machine language instruction

being executed. Since the operating system is always "RUN"ning in the

Commodore 64 (or, for that matter, any computer), the program counter
is always changing. It could only be stopped by halting the microproces-
sor in some way.

THE STACK POINTER

This register contains the location of the first empty place on the stack.

The stack is used for temporary storage by machine language pro-
grams, and by the computer.

THE INPUT/OUTPUTPORT

This register appears at memory locations 0 (for the DATADIRECTION

REGISTER)and 1 (for the actual PORT). It is an 8-bit input/output port.
On the Commodore 64 this register is used for memory management, to

allow the chip to control more than 64K of RAM and ROM memory.

The details of these registers are not given here. They are explained

as the principles needed to explain them are' explained.

HOW DO YOU WRITE MACHINE LAN-
GUAGE PROGRAMS?

Since machine language programs reside in memory, and there is no
facility in your Commodore 64 for writing and editing machine language

214 BASIC TO MACHINE. LANGUAGE

programs, you must use either a program to do this, or write for yourself
a BASIC program that "allows" you to write mClchine language.

The most common methods used to write machine language pro-
grams are assembler progams. These packages allow you to write ma-
chine language instructions in a standardized mnemonic format, which
makes the machine language program a lot more readable than a
stream of numbers! Let's review: A program that allows you to write
machine language programs in mnemonic format is called an assem-
bler. Incidentally, a program that displays a machine language pro-
gram in mnemonic format is called a disassembler. Available for your
Commodore 64 is a machine language monitor cartridge (with assem-
bler/ disassembler, etc.) made by Commodore:

64MON

The 64MON cartridge available from your local dealer, is a program
that allows you to escape from the world of CBM BASIC, into the land of
machine language. It can display the contents of the internal registers in
the 6510 microprocessor, and it allows you to display portions of mem-
ory, and change them on the screen, using the screen editor. It also has
a built-in assembler and disassembler, as well as many other features
that allow you to write and edit machine language programs easily. You
don't HAVEto use an assembler to write machine language, but the task
is considerably easier with it. If you wish to write machine language
programs, it is strongly suggested that you purchase an assembler of
some sort. Without an assembler you will probably have to "POKE" the
machine language program into memory, which is totally unadvisable.
This manual will give its examples in the format that 64MON uses, from
now on. Nearly all assembler formats ar~ the same, therefore the ma-
chine language examples shown will almost certainly be compatible.
with any assembler. But before explaining any of the other features of
64MON, the hexadecimal numbering system must be explained.

HEXADECIMAL NOTATION

Hexadecimal notation is used by most machine language program-

mers when they talk about a number or address in a machine language
program.

Some assemblers let you refer to addresses and numbers in decimal
(base 10), binary (base 2), or even octal (base 8) as well as hexadeci-

BASICTO MACHINELANGUAGE 215

. I

mal (base 16) (or just "hex" as most people say). These assemblers do
the conversions for you.

Hexadecimal probably seems a little hard to grasp at first, but like
most things, it won't take long to master with practice.

By looking at decimal (base 10) numbers, you can see that each digit
falls somewhere in the range between zero and a number equal to the
base less one (e.g., 9). THIS IS TRUEOF ALL NUMBER BASES.Binary
(base 2) numbers have digits ranging from zero to one (which is one less
than the base). Similarly, hexadecimal numbers should have digits rang-
ing from zero to fifteen, but we do not have any single digit figures for
the numbers ten to fifteen, so the first six letters of the alphabet are
used instead:

216 BASIC TO MACHINE LANGUAGE

DECIMAL HEXADECIMAL BINARY

0 0 00000000
1 1 00000001
2 2 00000010
3 3 00000011
4 4 00000100
5 5 00000101
6 6 00000110
7 7 00000111
8 8 00001000
9 9 00001001

10 A 00001010
11 B 00001011
12 C 00001100
13 D 00001101
14 E 00001110
15 F 00001111
16 10 00010000

let's look at it another way; here's an example of how a base 10
(decimal number) is constructed:

Base raised by
increasing powers:

Equals: .1000 100 10

Consider 4569 (base 10) 4 5 6 9
=(4x 1000)+(5X 100)+(6X 10)+9

Now look at an example of how a base 16 (hexadecimal number) is
constructed:

Base raised by
increasing powers:

Equals: .4096 256 16

Consider 11D9 (base 16) lID 9
=1 X4096+1 X256+13X 16+9

Therefore, 4569 (base 10) = 11 D9 (base 16)

The range for addressable memory locations is 0-65535 (as was
stated earlier). This range is therefore o-FFFF in hexadecimal notation.

Usually hexadecimal numbers are prefixed with a dollar sign ($). This
is to distinguish them from decimal numbers. let's look at some "hex"
numbers, using 64MON, by displaying the contents of some memory by
typing:

SYS 8*4096 (or SYS 12*4096)
B*

PC SR AC XRYR SP

.; 0401 32 04 5E 00 F6 (these may be different)

Then if you type in:

.M 0000 0020 (and press 8:1:1111:11.).

you will see rows of 9 hex numbers. The first 4-digit number is the ad-
dress of the first byte of memory being shown in that row, and the other

eight numbers are the actual contents of the memory locations begin-
ning at that start address.

You should really try to learn to "think" in hexadecimal. It's not too
difficult, because you don't have to think about converting it back into

BASIC TO MACHINE LANGUAGE 217

decimal. For example, if you said that a particular value is stored at
$14ED instead of 5357, it shouldn't make any difference.

YOUR FIRST MACHINE LANGUAGE INSTRUCTION

LDA- LOADTHEACCUMULATOR

In 6510 assembly language, mnemonics are always three characters.
LDA represents "load accumulator with . . . ," and what the ac-

cumulator should be loaded with is decided by the parameter(s) asso-
ciated with that instruction. The assembler knows which token is repre-
sented by each mnemonic, and when it "assembles" an instruction, it
simply puts into memory (at whatever address has been specified), the
token, and what parameters, are given. Some assemblers give error
messages, or warnings when you try to assemble something that either
the assembler, or the 6510 microprocessor, cannot do.

If you put a "#" symbol in front of the parameter associated with the
instruction, this means that you want the register specified in the instruc-
tion to be loaded with the "value" after the "#." For example:

LDA #$05 ~
This instruction will put $05 (decimal 5) into the accumulator register.
The assembler will put into the specified address for this instruction, $A9
(which is the token for this particular instruction, in this mode), and it will
put $05 into the next location after the location containing the instruction
($A9).

If the parameter to be used by an instruction has "#" before it; i.e.,
the parameter is a "value," rather than the contents of a memory loca-
tion, or another register, the instruction is said to be in the "immediate"
mode. To put this into perspective, let's compare this with another
mode:

If you want to put the contents of memory location $102E into the
accumulator, you're using the "absolute" mode of instruction:

LDA $102E

The assembler can distinguish between the two different modes because
the latter does not have a "#" before the parameter. The 6510 micro-
processor can distinguish between the immediate mode, and the abso-
lute mode of the LDA instruction, because they have slightly different
tokens. LDA (immediate) has $A9 as its token, and LDA(absolute), has
$AD as its token.

218 BASICTO MACHINELANGUAGE

The mnemonic representing an instruction usually implies what it
does. For instance, if we consider another instruction, LDX, what do you
think this does?

If you said "load the X register with. . . ," go to the top of the class.
If you didn't, then don't worry, learning machine language does take
patience, and cannot be learned in a day.

The various internal registers can be thought of as special memory
locations, because they too can hold one byte of information. It is not
necessary for us to explain the binary numbering system (base 2) since it
follows the same rules as outlined for hexadecimal and decimal outlined

previously, but one "bit" is one binary digit and eight bits make up one
byte! This means that the maximum number that can be contained in a

byte is the largest number that an eight digit binary number can be. This
number is 11111111 (binary), which equals $FF (hexadecimal), which
equals 255 (decimal). You have probably wondered why only numbers
from zero to 255 could be put into a memory location. If you try POKE
7680,260 (which is a BASIC statement that "says": "Put the number two
hundred and sixty, into memory location seven thousand, six hundred

and eighty," the BASIC interpreter knows that only numbers 0 - 255 can
be put in a memory location, and your Commodore 64 will reply with:

?ILLEGAL QUANTITY ERROR

READY.
.

If the limit of one byte is $FF (hex), how is the address parameter in the
absolute instruction "LDA $102E" expressed in memory? It's expressed in
two bytes (it won't fit into one, of course). The lower (rightmost) two
digits of the hexadecimal address form the "low byte" of the address,
and the upper (leftmost) two digits form the "high byte."

The 6510 requires any address to be specified with its low byte first,
and then the high byte. This means that the instruction "lDA $102E" is
represented in memory by the three consecutive values:

$AD, $2E, $10

Now all you need to know is one more instruction and then you can write
your first program. That instruction is BRK. For a full explanation of this
instruction, refer to M.O.S. 6502 Programming Monuol. But right now,
you can think of it as the END instruction in machine language.

BASIC TO MACHINE LANGUAGE 219

If we write a program with 64MON and put the BRKinstruction at the
end, then when the program is executed, it will return to 64MON when it

is finished. This might not happen if there is a mistake in your program,
or the BRK instruction is never reached (just like an END statement in
BASIC may never get executed). This means that if the Commodore 64

didn't have a STOP key, you wouldn't be able to abort your BASIC pro-
grams!

WRITING YOUR FIRST PROGRAM

If you've used the POKEstatement in BASIC to put characters onto the
screen, you're aware that the character codes for POKEing are different
from CBM ASCII character values. For example, if you enter:

PRINT ASq"A") (and press .:~llIm~/.)

the Commodore 64 will respond with:

65

READY.
.

However, to put an "A" onto the screen by POKEing, the code is I,
enter:

POKE 1024,1 :POKE 55296,14 (and .WII":~/.) (1024 is the start

of screen memory)

The "P" in the POKE statement should now be an "A."

Now let's try this in machine language. Type the following in 64MON:
(Your cursor should be flashing alongside a "." right now.)

.A 1400 LDA#$01 (and press .WIII':U.

220 BASIC TO MACHINE LANGUAGE

The Commodore 64 will prompt you with:

.A 1400 A9 01

.A 1402. LDA #$01

Type:

.A 1402 STA $0400

(The STA instruction stores the contents of the accumulator in a specified'
memory location.)
The Commodore 64 will prompt you with:

.A 1405 ..

Now type in:

.A 1405 LDA #$OE

.A 1407 STA $D800

.A 140A BRK

Clear the screen', and type:

G 1400

The G should turn into an "A" if you've done everything correctly.
You have now written your first machine language program. Its pur-

pose is to store one character ("A") at the first location in the screen
memory. Having achieved this, we must now explore some of the other
instructions, and principles.

ADDRESSING MODES

ZERO PAGE

As shown earlier, absolute addresses are expressed in terms of a high
and a low order byte. The high order byte is often referred to as the

page of memory. For example, the address $1637 is in page $16 (22),
and $0277 is in page $02 (2). There is, however, a special mode of
addressing known as zero page addressing and is, as the name implies,
associated with the addressing of memory locations in page zero. These

BASIC TO MACHINE LANGUAGE 221

addresses, therefore, ALWAYShave a high order byte of zero. The zero
page mode of addressing only expects one byte to describe the ad-
dress, rather than two when using an absolute address. The zero page
addressing mode tells the microprocessor to assume that the high order
address is zero. Therefore zero page addressing can reference memory
locations whose addresses are between $0000 and $OOFF.This may not
seem too important at the moment, but you'll need the principles of zero
page addressing soon.

THE STACK

The 6510 microprocessor has what is known as a stack. This is used
by both the programmer and the microprocessor to temporarily re-
member things, and to remember, for example, an order of events. The
GOSUB statement in BASIC, which allows the programmer to call a sub-
routine, must remember where it is being called from, so that when the
RETURNstatement is executed in the subroutine, the BASIC interpreter
"knows" where to go back to continue executing. When a GOSUB
statement is encountered in a program by the BASIC interpreter, the
BASIC interpreter "pushes" its current position onto the stack before
going to do the subroutine, and when a RETURNis executed, the in-
terpreter "pulls" off the stack the information that tells it where it was
before the subroutine call was made. The interpreter uses instructions
like PHA, which pushes the contents of the accumulator onto the stack,
and PLA (the reverse) which pulls a value off the stack and into the
accumulator. The status register can also be pushed and pulled with the
PHP and PLP, respectively.

The stack is 256 bytes long, and is located in page one of memory. It
is therefore from $0100 to $01 FF. It is organized backwards in memory.
In other words, the first position in the stack is at $01 FF, and the last is
at $0100. Another register in the 6510 microprocessor is called the stack

pointer, and it always points to the next available location in the stack.
When something is pushed onto the stack, it is placed where the stack
pointer points to, and the stack pointer is moved down to the next posi~
tion (decremented). When something is pulled off the stack, the stack
pointer is incremented, and the byte pointed to by the stack pointer is

placed into the specified register.

222 BASIC TO MACHINE LANGUAGE

Up to this point, we have covered immediate, zero page, and abso-
lute mode instructions. We have also covered, but have not really talked
about, the "implied" mode. The implied mode means that information is

implied by an instruction itself. In other words, what registers, flags,
and memory the instruction is referring to. The examples we have seen
are PHA, PLA, PHP, and PLP, which refer to stack processing and. the
accumulator and status registers, respectively.

NOTE: The X register will be referred to as X from now on, and similarly A (ac-
cumulator), Y (Y index registe~), 5 (stack pointer), and P (processor status).

INDEXING

Indexing plays an extremely important part in the running of the 6510
microprocessor. It can be defined as "creating an actual address from a
base address plus the contents of either the X or Y index registers."

For example, if X contains $05, and the microprocessor executes an
LDA instruction in the "absolute X indexed mode" with base address

(e.g., $9000), then the actual location that is loaded into the A register
is $9000 + $05 = $9005. The mnemonic format of an absolute indexed
instruction is the same as an absolute instruction except a ",X" or ", Y"
denoting the index is added to the address.

EXAMPLE:

LDA $9000,X

There are absolute indexed, zero page indexed, indirect indexed,
and indexed indirect modes of addressing available on the 6510
microprocessor.

INDIRECT INDEXED

This only allows usage of the Y register as the index. The actual ad-
dress can only be in zero page, and the mode of instruction is called
indirect because the zero page address specified in the instruction con-
tains the low byte of the actual address, and the next byte to it contains
the high order byte.

BASICTO MACHINELANGUAGE 223

EXAMPLE:

Let us suppose that location $02 contains $45, and location $03 con-
tains $1 E. If the instruction to load the accumulator in the indirect inde-

xed mode is executed and the specified zero page address is $02, then
the actual address will be:

Low order = contents of $02

High order = contents of $03
Y register =$00

Thus the actual address = $1E45 + Y = $1E45.

The title of this mode does in fact imply an indirect principle, although
this maybe difficult to grasp at first sight. Let's look at it another way:

"I am going to deliver this letter to the post office at address
$02,MEMORY ST., and the address on the letter is $05 houses past
$1600, MEMORY street." This is equivalent to the code:

LDA #$00
STA $02
LDA #$16
STA $03
LDY#$05
LDA ($02), Y

- load low order actual .base address

- set the low byte .of the indirect address
- load high order indirect address
- set the high byte of the indirect address
- set the indirect index (Y)

- load indirectly indexed by Y

INDEXED INDIRECT

Indexed indirect only allows usage of the X register as the index. This
is the same as indirect indexed, except it is the zero page address of the
pointer that is indexed, rather than the actual base address. Therefore,
the actual base address IS the actual address because the index has

already been used for the indirect. Index indirect would also be used if

224 BASIC TO MACHINE LANGUAGE

a table of indirect pointers were located in zero page memory, and the
X register could then specify which indirect pointer to use.

EXAMPLE:

Let us suppose that location $02 contains $45, and location $03 con-
tains $10. If the instruction to load the accumulator in the indexed indi-

rect mode is executed and the specified zero page address is $02, then
the actual address will be:

Low order = contents of ($02 + X)
High order = contents of ($03+X)
X register = $00

Thus the actual pointer is in = $02 + X = $02.

Therefore, the actual address is the indirect address contained in $02
which is again $1045.

The title of this mode does in fact imply the principle, although it may
be difficult to grasp at first sight. Look at it this way:

"I am going to deliver this letter to the fourth post office at address
$01 ,MEMORY ST., and the address on the letter will then be delivered to
$1600, MEMORY street." This is equivalent to the code:

LDA #$00
STA $06
LDA #$16
STA $07
LDX#$05

LDA ($02,X)

- load low order actual base address

- set the low byte of the indirect address
- load high order indirect address
- set the high byte of the indirect address
- set the indirect index (X)
-load indirectly indexed by X

NOTE: Of the two indirect methods of addressing, the first (indirect indexed) is far

more widely used.

BASIC TO MACHINE LANGUAGE 225

BRANCHES AND TESTING

Another very important principle in machine language is the ability to
test, and detect certain conditions, in a smiliar fashion to the "IF. . .
THEN, IF . . . GOTO" structure in CBM BASIC.

The various flags in the status register are affected by different in-
structions in different ways. For example, there is a flag that is set when
an instruction has caused a zero result, and is reset when a result is not
zero. The instruction:

LDA #$00

will cause the zero result flag to be set, because the instruction has

resulted in the .accumulator containing a zero.
There are a set of instructions that will, given a particular condition,

branch to another part of the program. An example of a branch instruc-
tion is BEQ, which means Branch if result EQual to zero. The branch
instructions branch if the condition is true, and if not, the program con-
tinues onto the next instruction, as if nothing had occurred. The branch
instructions branch not by the result of the previous instruction(s), but by
internally examining the status register. As was just mentioned, there is
a zero result flag in the status register. The BEQ instruction branches if
the zero result flag (known as Z) is set. Every branch instruction has an
opposite branch instruction. The BEQ instruction has an opposite instruc-
tion BNE, which means Branch on result Not Equal to zero (i.e., Z not
set).

The index registers have a number of associated instructions which
modify their contents. For example, the INX instruction INcrements the X
index register. If the X.register contained $FF before it was incremented
(the maximum number the X register can contain), it will "wrap around"
back to zero. If you wanted a program to continue to do something until
you had performed the increment of the X index that pushed it around
to zero, you could use the BNE instruction to continue "looping" around,
until X became zero.

The reverse of INX, is DEX,which is DEcrement the X index register. If
the X index register is zero, DEX wraps around to $FF. Similarly, there
are INY and DEYfor the Y index register.

226 BASIC TO MACHINE LANGUAGE

But what if a program didn't want to wait until X or Y had reached (or
not reached) zero? Well there are comparison instructions, CPX and
CPY, which allow the machine language programmer to test the index
registers with specific values, or even the contents of memory locations.
If you wanted to see if the X register contained $40, you would use the
instruction:

CPX #$40
BEQ

(some other
part of the
program)

- compare X with the "value" $40.
- branch to somewhere else in the

program, if this condition is "true."

The compare, and branch instructions playa major part in any machine
language program.

The operand specified in a branch instruction when using 64MON is
the address of the part of the program that the branch goes to when the
proper conditions are met. However, the operand is only an offset,
which gets you from where the program currently is to the address spec-
ified. This offset is just one byte, and therefore the range that a branch
instruction can branch to is limited. It can branch from 128 bytes back-
ward, to 127 bytes forward.

NOTE: This is a total range of 255 bytes which is, of course, the maximum range of
values one byte can contain.

64MON will tell you if you "branch out of range" by refusing to "as_
semble" that particular instruction. But don't worry about that now be-
cause it's unlikely that you will have such branches for quite a while. The
branch is a "quick" instruction by machine language standards because
of the "offset" principle as opposed to an absolute address. 64MON
allows you to type in an absolute address, and it calculates the correct
offset. This is just one of the "comforts" of using an assembler.

NOTE: It is NOT possible to cover every single branch instruction. For further informa-

tion, refer to the Bibliography section in Appendix F.

BASIC TO MACHINE LANGUAGE 227

SUBROUTINES

In machine language (in the same way as using BASIC), you can call
subroutines. The instruction to call a subroutine is JSR (Jump to Sub-
Routine), followed by the specified absolute address.

Incorporated in the operating system, there is a machine language
subroutine that will PRINT a character to the screen. The CBM ASCII

code of the character should be in the accumulator before calling the
subroutine. The address of this subroutine is $FFD2.

Therefore, to print "HI" to the screen, the following program should
be entered:

.A 1400 lDA #$48

.A 1402 JSR $FFD2

.A 1405 lDA #$49

.A 1407 JSR $FFD2

.A 140A lDA #$OD

.A 140C JSR $FFD2

.A 140F BRK

.G 1400

- load the C8M ASCII code of "H"

- print it
- load the C8M ASCII code of "1"

- print that too
- print a carriage return as well

- return to 64MON

- will print "HI" and return to 64MON

The "PRINT a character" routine we have just used is part of the
KERNAl jump table. The instruction similar to GOTO in BASIC is JMP,
which means JuMP to the specified absolute address. The KERNAl is a
long list of "standardized" subroutines that control All input and output
of the Commodore 64. Each entry in the KERNAlJMPs to a subroutine in
the operating system. This "jump table" is found between memory loca-
tions $FF84 to $FFF5 in the operating system. A full explanation of the
KERNAl is available in the "KERNAl Reference Section" of this manual.

However, certain routines are used here to show how easy and effective
the KERNAl is.

let's now use the new principles you've just learned in another pro-
gram. It will help you to put the instructions into context:

228 BASIC TO MACHINE LANGUAGE

This program will display the alphabet using a KERNALroutine. The
only new instruction introduced here is TXATransfer the contents of the X
index register, into the Accumulator.

.A 1400 LDX#$41

.A 1402 TXA

.A 1403 JSR $FFD2

.A 1406 INX

.A 1407 CPX #$5B

.A 1409 BNE $1402

.A 140B BRK

- X = CBM ASCII of "A"

-A=X
- print character
- bump count
- have we gone past "Z" ?
- no, go back and do more
- yes, return to 64MON

To see the Commodore 64 print the alphabet, type the familiar com-
mand:

.G 1400

The comments that are beside the program, explain the program flow
and logic. If you are writing a program, write it on paper first, and then
test it in small parts if possible.

USEFUL TIPS FOR THE BEGINNER

One of the best ways to learn machine language is to look at other
peoples' machine language programs. These are published all the time
in magazines and newsletters. Look at them even if the article is for a
different computer, which also uses the 6510 (or 6502) microprocessor.
You should make sure that you thoroughly understand the code that you
look at. This will require perseverence, especially when you see a new
technique that you have never come across before. This can be infuriat-
ing, but if patience prevails, you will be the victor.

Having looked at other machine language programs, you MUSTwrite
your own. These may be utilities for your BASIC programs, or they may
be an all machine language program.

BASIC TO MACHINE LANGUAGE 229

You should also use the utilities that are available, either IN your
computer, or in a program, that aid you in writing, editing, or tracking
down errors in a machine language program. An example would be the
KERNAL,which allows you to check the keyboard, print text, control
peripheral devices like disk drives, printers, modems, etc., manage
memory and the screen. It ;s extremely powerful and it is advised
strongly that it is used (refer to KERNALsection, Page 268).

Advantages -of writing programs in machine languag-e:

1. Speed -Mac-hine language is
thousands of times faster than
BASIC.

2. Tightness -A machine language program can be made totally
"watertight," Le., the user can be made to do ONLYwhat the
program allows, and no more. With a high level language, you
are relying on the user not "crashing" the BASIC interpreter by
entering, for example, a zero which later causes a:

hundreds, and in some cases

a high level language such as

?DIVISION BY ZERO ERROR IN LINE-830

READY..
In essence, the computer can only be maximized by the machine lan-
guage programmer.

APPROACHING A LARGE TASK

When approaching a large task in machine language, a certain
amount of subconscious thought has usually taken place. You think
about how certain processes are carried out in machine language.
When the task is started, it is usually a good idea to write it out on
paper. Use block diagrams of memory usage, functional modules of
code required, and a program flow. Let's say that you wanted to write a
roulette game in machine language. You could outline it something like
this:

230 BASICTO MACHINELANGUAGE

. Display title

. Ask if player requires instructions

. YES-display them-Go to START

. NO'-Go to START

. STARTInitialize everything

. MAINdisplay roulette table. Take in bets

. Spin wheel

. Slow wheel to stop. Check bets with result

. Informplayer

. Player any money left?

. YES-Go to MAIN

. NO-Inform user!, and go to START

This is the main outline. As each module is approached, you can
break it down further. If you look' at a large indigestable problem as
something that con be broken down into small enough pieces to be
eaten, then you'll be able to approach something that seems impossible,
and have it all faU into place.

This process only improves with practice, so KEEPTRYING.

BASIC TO MACHINE LANGUAGE 231

MCS6510 MICROPROCESSOR

ADC
AND
ASl

BeC
BCS
BEQ
BIT
BMI
BNE
BPl
BRK
BVC
BVS

ClC
ClD
Cli
ClV
CMP
CPX
CPY

DEC
DEX
DEY

EOR

INC
INX
INY

JMP

Add Memory to Accumulator with Carry
"AND" Memory with Accumulator
Shift Left One Bit (Memory or Accumulator)

Branch on Carry Clear
Branch on Carry Set
Branch on Result Zero
Test Bits in Memory with Accumulator
Branch on Result Minus
Branch on Result not Zero
Branch on Result Plus
Force Break
Brancb on Overflow Clear
Branch on OverflowSet

Clear Carry Flag
Clear Decimal Mode
Clear Interrupt Disable Bit
Clear Overflow Flag
Compare Memory and Accumulator
Compare Memory and Index X
Compare Memory and Index Y

Decrement Memory by One
Decrement Index X by One
Decrement Index Y by One

"Exclusive-Or" Memory with Accumulator

Increment Memoryby One
Increment Index X by One
Increment Index Y by One

Jump to New. Location

232 BASIC TO MACHINE LANGUAGE

INSTRUCTION SET-ALPHABETIC SEQUENCE

JSR

LDA
LDX
LDY
LSR

NOP

ORA

PHA
PHP
PLA
PLP

ROL
ROR
RTI
RTS

SBC
SEe
SED
SEI
STA
STX
STY

TAX
TAY
TSX
TXA
TXS
TYA

Jump to New location Saving Return Address

Load Accumulator with Memory
load Index X with Memory
Load Index Y with Memory
Shift Right One Bit (Memory or Accumulator)

No Operation

"OR" Memory with Accumulator

Push Accumulator on Stack
Push Processor Status on Stack
Pull Accumulator from Stack
Pull Processor Status from Stack

Rotate One Bit Left (Memory or Accumulator)
Rotate One Bit Right (Memory or Accumulator)
Return from Interrupt
Return from Subroutine

Subtract Memory from Accumulator with Borrow
Set Carry Flag
Set Decimal Mode

Set Interrupt Disable Status
Store Accumulator in Memory
Store Index X in Memory
Store Index Y in Memory

Transfer Accumulator to Index X
Transfer Accumulator to Index Y
Transfer Stack Pointer to Index X
Transfer Index X to Accumulator
Transfer Index X to Stack Pointer
Transfer Index Y to Accumulator

BASICTO MACHINELANGUAGE 233

The following notation applies to this summary:

Note: At the top of each table is located in parentheses a

reference number (Ref: XX) which directs the user to

that Section in the MCS6500 Microcomputer Family

Programming Manual in which the instruction is defined

and discussed.

234 BASIC TO MACHINE LANGUAGE

A Accumulator

X, y Index Registers

M Memory

P ProcessorStatusRegister
S Stack Pointer

I Change

No Change

+ Add

/\ Logical AND

Subtract

:If Logical Exclusive Or

t Transfer from Stack

... Transfer to Stack

Transfer to

<- Transferfrom

V Logical OR

PC Program Counter

PCH Program Counter High

PCL Program Counter Low

OPER OPERAND

/I IMMEDIATE ADDRESSING MODE

ADC
Add memo,y to accumulato, with carry

A + M + C ~ A, C

ADC

(Ref: 2.2.1)

Ni!-CIDV

111--1
Operation:

* Add 1 if page boundary 19 crossed.

AND
"AND" memo,y with accumulato, AND

Logical AND to the accumulator

Operation: A A M ~ A

(Ref: 2.2.3.0)

N ! C I D V

11----

* Add 1 if page boundary is crossed.

BASIC TO MACHINE LANGUAGE 235

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Immediate ADC IIOper 69 2 2

Zero Page ADC Oper 65 2 3

Zero Page, X ADC Oper, X 75 2 4

Absolute ADC Oper 6D 3 4

Absolute, X ADC Oper, X 7D 3 4*

Absolute, Y ADC Oper,Y 79 3 4*

(lndirec t, X) ADC (Oper, X) 61 2 6

(Indirect), Y ADC (Oper), Y 71 2 5*

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Immediate AND 1/Oper 29 2 2

Zero Page AND Oper 25 2 3

Zero Page, X AND Oper, X 35 2 4

Absolute AND Oper 2D 3 4

Absolute, X AND Oper, X 3D 3 4*

Absolute, Y AND Oper,Y 39 3 4*

(Indirect, X) AND (Oper, X) 21 2 6

(Indirect), Y AND (Oper), Y 31 2 5

ASL ASL Shift Left One Bit (Memory or Accumulator) ASL

Operation: C <- ~ ...0
N -c C I D V

/11---

(Ref: 10.2)

Bee BCC Branch on Carr.v Clear

Branch on C = 0

Bee
Operation: N i!-C I D V

(Ref: 4.1.1.3)

* Add 1 if branch occurs to same page.

* Add 2 if branch occurs to different page.

BeS BCS Branchon carryset Bes

Operation: Branch on C = 1 N i\ C I D V

(Ref: 4.1.1.4)

* Add 1 if branch occurs to same page.

* Add 2 if branch occurs to next page.

236 BASIC TO MACHINE LANGUAGE

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Accumulator ASLA 0A 1 2

Zero Page ASL Oper 06 2 5

Zero Page, X ASL Oper, X 16 2 6

Absolute ASL Oper 0E 3 6

Absolute, X ASL Oper, X IE 3 7

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Relative BCC Oper 90 2 2*

Addressing Assembly Language OP 110. No.
Mode Form CODE Bytes Cycles

Relative BCS Oper B 2 2*

BEO
BEQ Branch on result zero
1

(Ref: 4.1.1. 5)

BEO

Operation: Branch on g N g C I D V

* Add 1 if branch occurs to same page.

* Add 2 if branch occurs to next page.

BIT BIT Test:bits in memory with accumulator BIT

Operation: A A M, M] ~ N, M6 ~ V

Bit 6 and] are transferred to the status register.

If the result of A 1\M is zero then Z - 1, otherwise

Z - 0
(Ref: 4.2.1.1)

BMI BMI Branch on result minus BMI

Operation: Branch on N = 1 N ~ C I D V

(Ref: 4.1.1.1)

Addressing AssemblyLanguage OP No. No.
Mode Form CODE Bytes Cycles

Relative BEQ Oper F0 2 2*

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Zero Page BIT Oper 24 2 3

Absolute BIT Oper 2C 3 4

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Relative BMI Oper 30 2 2*

* Add 1 if branch occurs to same page.

* Add 2 if branch occurs to different page.

BASIC TO MACHINE LANGUAGE 237

BNE BNE Branch on result not zero BNE
Operation: Branch on Z - 0 NtCIDV

(Ref: 4..1.1.6)

* Add 1 if branch occurs to same page.

* Add 2 if branch occurs to different page.

BPL BPL Branch on result plus BPL

Operation: Branch on N = 0 N~CIDV

(Ref: 4.1.1.2)

* Add 1 if branch occurs to same page.

* Add 2 if branch occurs to different page.

BRK BRK Force Break IRK

Operation: Forced Interrupt PC + 2 ~ P ~

(Ref: 9.11)

N ~ C I D V

---1--

1. A BRK command cannot be masked by setting I.

238 BASIC TO MACHINE LANGUAGE

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Relative BNE Oper IX! 2 2*

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Relative BPL Oper 10 2 2*

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Implied BRK 00 1 7

Bye BVC Branchonoverflow clear

Operation: Branch on V = 0

Bye
N~CIDV

(Ref: 4.1.1.8)

* Add 1 if branch occurs to same page.

* Add 2 if branch occurs to different page.

ays BVS Branch on overflow set BYS
Operation: Branch on V = 1 N !! C I D V

(Ref: 4.1.1.7)

* Add 1 if branch occurs to same page.

* Add 2 if branch occurs to different page.

CLC CLC Clear carry flag eLe
Operation: 0 ~ C N !! C I D V

(Ref: 3.0.2)
--0---

BASIC TO MACHINE LANGUAGE 239

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Relative BVC Oper 50 2 2*

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Relative BVS Oper 70 2 2*

Addressing AssemblyLanguage OP No. No.
Mode Form CODE BytE!s Cycles

Implied CLC 18 1 2

CLD CLD Clear decimal mode CLD
Operation: IJ + D NtCIDV

(Ref: 3.3;2)
(/1-

CLI CLI Clear interrupt disable bit CLI

Operation: IJ + I

(Ref: 3.2.2)

N ~ C I D V

---(,!--

CLV CLV Clear overflow flag CLV
Operation: IJ + V

(Ref: 3.6.1)

NtCOIDV

(,!

240 BASICTO MACHINE LANGUAGE

Addressing Assembly Language OP No. No.
}fode Form CODE Bytes Cycles

Implied CLD D8 1 2

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles.

Implied CLI 58 1 2

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Implied CLV B8 1 2

(MP CMPCompare memory and accumulator

Operation:A - M N ~ C I D V

CMP

(Ref: 4.2.1)
111---

* Add 1 if page boundary is crossed.

(PX CPX Compare Memory and Index X (PX

Operation: X - M NcCIDV

111---
(Ref: 7.8)

(py Cpy Compare memory and index Y Cpy
Opera~ion: Y - M N i!iC I D V

111---
(Ref: 7.9)

BASICTO MACHINE LANGUAGE 241

Addressing Issembly Language OP No. No.
Mode Form CODE Bytes Cycles

Immediate CMP #Oper C9 2 2

Zero Page CMP Oper C5 2 3

Zero Page, X CMP Ope r, X D5 2 4

Absolute CMP Oper CD 3 4

Absolute, X CMP Oper, X DD 3 4*

Absolute, Y CMP Oper,Y D9 3 4*

(Indirect, X) CMP (Oper, X) Cl 2 6

(Indirect), Y CMP (Oper), Y Dl 2 5*

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Immediate CPX #Oper E0 2 2

Zero Page CPX Oper E4 2 3

Absolute CPX Oper EC 3 4

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Immediate CPY # Oper C0 2 2

Zero Page CPY Oper C4 2 3

Absolute CPY Oper CC 3 4

DEC DEC Decrement memory by one DEC
Operation: M - 1 + M N~CIDV

//----
(Ref: 10.7)

DEX DEX Decrement index X bv one DEX
Operation:X - 1 + X

(Ref: 7.6)

N ~ C I D V

//----

DEY DEY Decrement index Y by one DEY
Operation: Y - 1 + Y

(Ref: 7.7)

N ~ C I D V

//----

242 BASIC TO MACHINE LANGUAGE

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Zero Page DEC Oper C6 2 5

Zero Page, X DEC Oper, X D6 2 6

Absolute DEC Oper CE 3 6

Absolute, X DEC Oper, X DE 3 7

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Implied DEX CA 1 2

Addressing AssemblyLanguage OP No. No.
Mode Form CODE Bytes Cycles

Implied DEY 88 1 2

EOR EOR "Exclusive-Or" memory with accumulator EOR
Operation: A ¥ M ~ A

(Ref: 2.2.3.2)

N e C I D V

11----

* Add 1 if page boundary is crossed.

INC INC Increment memory by one INC

Operation:M + 1 ~ M N e C I D V
11----

(Ref: 10.6)

INX INX Increment Index X by one

Operation: X + 1 ~ X

INX
N i5 C I D V

11----
(Ref: 7.4)

BASICTO MACHINE LANGUAGE 243

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Immediate EOR # Oper 49 2 2

Zero Page EOR Oper 45 2 3

Zero Page, X EOR Oper, X 55 2 4

Absolute EOR Oper 4D 3 4

Absolute, X EOR Oper, X 5D 3 4*

Absolute, Y EOR Oper, Y 59 3 4*

(Indirect, X) EOR (Oper, X) 41 2 6

(Indirect) ,Y EOR (Oper) , Y 51 2 5*

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Zero Page INC Oper E6 2 5

Zero Page, X INC Oper, X F6 2 6

Absolute INC Oper EE 3 6

Absolute, X INC Oper, X FE 3 7

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Implied INX E8 1 2

INY INY Increment Index .yby one INY
Operation: Y + 1 ~ Y

(Ref: 7.5)

N g C I D V

11----

JMP JMP Jump to new location

PCL

JMP
Op..ration: (PC + 1)

(PC + 2) PCH (Ref:
(Ref:

4.0.2)
9.8.1)

JSR JSR Jump tonew locationsavingreturnaddress JSR
Operation:PC + 2 +, (PC+ 1) ~ PCL N g C I D V

(PC+ 2)~ PCH _ _ _ _ _ _
(Ref: 8.1)

244 BASIC TO MACHINE LANGUAGE

Addressing Assembly Language OP No. No.
Mode Form' CODE Bytes Cycles

Impl ied INY C8 1 2

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Absolute JMP Oper 4C 3 3

Indirect JMP (Oper) 6C 3 5
I

Addressing AssemblyLanguage OP No. No.
Mode Form CODE Bytes Cycles

Absolute JSR Oper 20 3 6

LDA LOA Loadaccumulator with memory LDA
'Operation: M ... A

(Ref: 2.1.1)

N;;CIDV

11----

* Add 1 'if page boundary is crossed.

LDX LDXLoadindex X with memory
Operation: M'" X

LDX

(Ref: 7.0)

N i! C I D V

11----

* Add 1 when page boundary is crossed.

BASIC TO MACHINE LANGUAGE 245

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Immediate LDA # Oper A9 2 2

Zero Page LDA Oper AS 2 3

Zero Page, X LDA OpeT, X BS 2 4

Absolute LDA Oper AD 3 4

Absolute, X LDA .Oper, X BD 3 4*

Absolute, Y LDA Oper, Y B9 3 4*

(Indirect, X) LDA (Oper, X) Al 2 6

(Indirect), Y LDA (Oper), Y Bl 2 5*

Addressing Assembly Language OP No. No.
Mode Fo.rm CODE Bytes Cycles

.Immediate LDX /IOper A2 2 2

.ZeroPage LDX Oper A6 2 3

.Zero Page, Y LDX Oper,Y B6 2 4

Absolute LDX Oper AE 3 4

. Absolute, Y LDX Oper,Y BE 3 4*

LDY LDY Load index Y with memory LDY

Operation: M + Y N!!CIDV

II -- ---
(Ref: 7.1)

* Add 1 when page boundary is crossed.

LSR LSR Shift. right one bit (memory or accumulator) .LSR

Operation: 0 -.+ ~ - C N!!CIDV

011---
.(Ref: 10.1)

NOP No operation

Operation: No Operation (2 cycles)

NOP NOP
N!!CIDV

246 BASIC TO MACHINE LANGUAGE

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Immediate LDY # Oper A0 2. 2

Zero Page LDY Oper A4 2 3

Zero Page, X LDY Oper, X B4 2 4

Absolute LDY Oper AC 3 4

Absolute, X LDY Oper, X BC 3 4*

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Ac=umulator LSR A 4A 1 2

Zero Page LSR Oper 46 2 5

Zero Page, X LSR Oper, X 56 2 6

Absolute LSR Oper 4E 3 6

Absolute, X LSR Oper, X 5E 3 7

Addressing AssemblyLanguage OP No. No.
Mode Form CODE Bytes Cycles

Implied NOP EA 1 2

ORA ORA "OR" memory with accumulator ORA
operation: A V M ~ A

(Ref: 2.2.3.1)

N;;CIDV

11----

* Add 1 on page crossing

PHA 'PHA Push-accumulator un stack PHA
Operation: A { N ;; C I D V

(Ref: 8.5)

PHP PHP Push processor status on stack PHP
operation: P{ Ni!CIDV

(Ref: 8.11)

BASIC TO MACHINE' LANGUAGE 247

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Iuunediate ORA #oper 09 2 2

Zero Page ORA Oper 05 2 3

Zero Page, X ORA Oper, X 15 2 4

Absolute ORA Oper 0D 3 4

Absolute, X ORA ope'r,X lD 3 4*

Absolute, Y ORA Oper,Y 19 3 4*

(Indirect, X) ORA (Oper, X) 01 2 6

(Indirect), Y ORA (Oper), Y 11 2 5

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Implied PHA 48 1 3

Addressing AssemblyLanguage OP No. No.
Mode Form CODE Bytes Cycles

Implied PHP 08 1 3

PLA PLA Pull accumulator from stack PLA
Operation: A t

(Ref: 8.6)

N iI C I D V

11----

'LP PLP Pull processor status from stack PLP
Operation: P t NilCIDV

(Ref: 8.12)
From Stack

ROL ROL Rotate one hit left (memory or accumulator) ROL

Operation: N j1; C I D V

111---
(Ref: 10.3)

.248 BASIC TO MACHINE LANGUAGE

Addressing Assembly Languag.! OP No. No.
Mode Form CODE Bytes Cycles

Implied PLA 68 1 4

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Implied PLP 28 1 4

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Accumulator ROL A 2A 1 2

Zero Pge ROL Oper 26 2 5

Zero Page, X ROL Oper, X 36 2 6

Absolute ROL .Ope.r 2E 3 6

Absolute, X ROL 'Oper, X 3E 3 7

ROR ROR Rotate one bit right (memory or accumulator) ROR

Operation: NiSCIDV

-/-/-/---

Note: ROR instruction is available on MCS650X micro-

processors after June, 1976.

RTI RTf Return from interrupt RTI

Operation: pt PCt N is C I D V

(Ref: 9.6)
From Stack

RTS RTS Return from subroutine RTS

Operation: PCt, PC + l~ PC N is C I D V

(Ref: 8.2)

BASIC TO MACHINE LANGUAGE 249

Addressing Assembly Language OP No. No.

Mode Form CODE Bytes Cycles

Accumulator RORA 6A 1 2

Zero Page ROR Oper 66 2 5

Zero Page,X ROR Oper,X 76 2 6

Absolute ROR Oper 6E 3 6

Absolute,X ROR Oper,X 7E 3 7

Addressing Assembly Language OP No. No.
Morle Form CODE Bytes Cycles

Implied RTI 40 1 6

Addressing AssemblyLanguage OP No. No.

Mode Form CODE Bytes Cycles

Implied RTS 60 1 6

S8C SBCSBC Subtract memory {rom accumulator with borrow

Operation: A - M - C ~ A N ~ C I D V

Note: C= Borrow (Ref: 2.2.2) .' .' .'--.'

* Add 1 when page boundary is crossed.

SEC SEC Set carry flag SEC
Operation: 1 ~ C

(Ref: 3.0.1)

N i5 C 1 D V

--1---

SED SED Set decimal mode SED
Operation: 1 ~ D

(Ref: 3.3.1)

N i!C I D V

1-

250 BASIC TO MACHINE LANGUAGE

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Immediate
SBC #Oper E9 2 2

Zero Page SBC Oper E5 2 3

Zero Page, X SBC Oper,X F5 2 4

Absolute SBC Oper ED 3 4

Absolute, X SBC Oper,X FD 3 4*

Absolute, Y SBC Oper,Y F9 3 4*

(Indirect, X) SBC (Oper, X) El 2 6

(Indirect), Y SBC (Oper), Y Fl 2 5*

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Implied SEC 38 1 2

Address ing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Implied SED F8 1 2

SEI SEISetinterrupt disablestatus

Operation: 1 ~ 1

SEI

N i!iC 1 D V

---1--
(Ref: 3.2.1)

SfA STA Store accumulator in memory SfA
Operation: A ~ M N i!iC I D V

(Ref: 2.l.2)

STX STX Store index X in memory STX
Operation: X ~ M N i!iC I D V

(Ref: 7.2)

BASIC TO MACHINE LANGUAGE 2S 1

Addressing Assembly Language OP No. No_.
Mode FOTm CODE Bytes Cycles

Implied SEI 78 1 2

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Zero Page STA Oper 85 2 3

Zero Page, X STA Oper, X 95 2 4

Absolute STA Oper 8D 3 4

Absolute, X STA Oper, X 9D 3 5

Absolute, Y STA Oper,Y 99 3 5

(Indirect, X) STA (Oper, X) 81 2 6

(Indirect), Y STA (Oper), Y 91 2 6

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Zero Page STX Oper 86 2 3

Zero Page, Y STX Oper,Y 96 2 4

Absolute STX Oper 8E 3 4

STY STY StoreindexY inmemory

Operation: Y ~ M

STY
NaCIDV

(Ref: 7.3)

TAX TAX TransferaccumulatortoindexX
Operation: A ~ X N a C I D v

11----

TAX

(Ref: 7.11)

TAY
T A Y Transfe." accumulator to index Y

TAY
Operation: A ~ Y N a C I D v

11----
(Ref: 7.13)

252 BASIC TO MACHINE LANGUAGE

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Zero Page STY Oper 84 2 3

Zero Page, X STY Oper, X 94 2 4

Absolute STY Oper 8C 3 4

Addressing Assembly LanEuage OP No. No.
Mode Form CODE Bytes Cycles

Implied TAX AA 1 2

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Implied TAY A8 1 2

TSX TSX TransferstackpointertoindexX TSX

Operation: S ~ X N ~ C I D V

(Ref: 8.9)
11----

TXA TXA TransferindexX toaccumulator

Operation: X ~ A

TXA

(Ref: 7.l2)

N~CIDV

11----

TXS TXS TransferindexX tostackpointer TXS

Operation: X ~ S N i!C I D V

(Ref: 8.8)

TYA TYA TransferindexY toaccumulator TVA
Operation: Y ~ ANi! C I D V

(Ref: 7.14)
11----

BASIC TO MACHINE LANGUAGE 253

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Implied TSX BA 1 2

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Implied TXA 8A 1 2

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Implied TXS 9A 1 2

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Implied TYA 98 1 2

INSTRUCTION ADDRESSING MODES AND

ADC
AND
ASl
BCC
BCS
BEO
BIT
BMI
BNE
BPL
BRK
BVC
BVS
ClC
ClD
Cli
ClV
CMP
CPX
CPV
DEC
DEX
DEV
EOR
INC
INX
INY
JMP

x > x >

...

f
_ >

:s
X c

254 BASICTO MACHINE LANGUAGE

234
234

2 5 '6

3

234
2 3
2 3

5 6

234
5 6

4 4*4* 6 5*
4 4* 4 * 6 5*
6 7

2**.
2** .
2** .

4
2** .
2**.
2**.

2*'\.
2** .

2
2
2
2

4 4* 4 *. . 6 5*
4
4
6 7

2
2

4 4* 4* . 6 5-
6 7

2
2

3 5

· Add one cycle if indexing across page boundary.. Add one cycle if branch is taken, Add one additional

RELATED EXECUTIONTIMES (in clock cycles)
-

..
a»a.

x> x> -!
"a» x>-..,.. a»a»&- .., = =
= ._ .., .., .., " GI ..
E i A. A. A. ' . f f .:
= E 0 0 0 0 00= - - 0"'''''''-'i1'''e E ._ N N N - = =

JSR 6
LDA 2 3 4 4 4* 4* . 6 5* .
LDX 2 3 4 4 4* .
LDY 2 3 4 4 4* .
LSR 2 5 6 6 7
NOP 2
ORA 2 3 4 4 4* 4* . 6 5* .
PHA 3
PHP 3
PLA 4
PLP 4
ROL 2 5 6 6 7
ROR 2 5 6 6 7
RTI 6
RTS 6
sse 2 3 4 4 4* 4* . 6 S* .
sEe 2
SED 2
SEI 2
STA 3 4 4 5 5 6 6
STX 3 4 4
STY 3 4 4
TAX 2
TAY 2
TSX 2
TXA 2
TXS 2
TYA 2

if branching operation crosses page boundary

BASIC TO MACHINE LANGUAGE 255

00 - BRK 20 - JSR

01 - ORA- (Indirect,X) .21 -AND - (Indirect,X)

02 - Future Expansion 22 - Future Expansion

03 - Future Expansion 23 - Future Expansion

04 - Future Expansion 24 - BIT - Zero Page

05 - ORA- Zero Page 25 - AND - Zero Page

06 - ASL - Zero .Page 26 - ROL - Zero Page

07 - Future Expansion 27 - Future Expansion

08 - PHP 28 - PLP

09 - ORA-Immediate .29 - AND - Immediate

.0A - ASL - Accumulator 2A - ROL - Accumulator

0B - Future Expansion 2B - Future Expansion

0c - Future Expansion 2C - BIT - Absolute

0D - ORA- Absolute 2D - AND - Absolute

0E - ASL - Absolute 2E - ROL - Absolute

0F - Future Expansion 2F - Future Expansion

10 - .BPL 30 - 'BMl

11 - ORA- (Indirect),Y 31 - AND - (Indirect),Y

.12 - Future 'Expansion 32 - FutureExpansion

13 - Future Expansion 33 - Future Expansion

.14 - Future Expansion 34 - Future Expansion

15 - ORA - Zero Page,X 35 - AND - Zero Page,X

16 - ASL - Zero Page;X 36 - ROL - Zero Page,X

17 - Future Expansion 37 - Future Expansion

18 - CLC :38 - SEC

19 - ORA- -Absolute, Y 39 - AND - Abso1ute,Y

1A - Future Expansion 3A - FutureExpansion

1B - Future Expansion 3B - Future Expansion

1C - Future Expansion 3C - Future Expansion

1D -ORA - Abso1ute,X 3D - AND - Abso1ute,X

1E - ASL - Abso1ute,X 3E - ROL - Absa1ute,X

IF- Future Expansion 3F - .Future Expansion

256 BASICTO MACHINELANGUAGE

40 - RTI 60 - RTS

41 - EOR - (Indirect,X) 61 - ADC - (Indirect,X)

42 - Future Expansion 62 - Future Expansion

43 - Future Expansion 63 - Future Expansion

44 - Future Expansion 64 - Future Expansion

45 - EOR - Zero Page 65 - ADC - Zero Page

46 - LSR - Zero Page 66 - ROR - Zero Page

47 - Future Expansion 67 - Future Expansion

48 - PHA 68 - PLA

49 - EOR - Immediate 69 - ADC - Immediate

4A - LSR - Accumulator 6A - ROR - Accumulator

4B - FutureExpansion 6B - Future Expansion

4C - JHP - Absolute 6C - JHP - Indirect

4D - EOR - Absolute 6D - ADC - Absolute

4E - LSR - Absolute 6E - ROR - Absolute

4F - Future Expansion 6F - Future Expansion

50 - BVC 70 - BVS

51 - EOR - (Indirect),Y 71 - ADC - (Indirect),Y

52 - Future Expansion 72 - Future Expansion

53 - Future Expansion 73 - Future Expansion

54 - Future Expansion 74 - Future Expansion

55 - EOR - Zero Page,X 75 - ADC - Zero Page,X

56 - LSR - Zero Page,X 76 - ROR - Zero Page. X

57 - Future Expansion 77 - Future Expansion

58 - CLl 78 - SEI

59 - EOR - Absolute.Y 79 - ADC - Abso1ute.Y

SA - Future Expansion 7A - Future Expansion

5B - Future Expansion 7B - Future Expansion

5C - Future Expansion 7C - Future Expansion

5D - EOR - Absolute,X 7D - ADC - Absolute,X

5E - LSR - Absolute,X 7E - ROR - Absolute,X

SF - Future Expansion 7F - Future Expansion

BASIC TO MACHINE LANGUAGE 257

80 - Futur.e Expansion A0 - LDY - Immediate

81 - STA - (Indirect, X) A1 - LDA - (Indirect,X)

82 - Future Expansion A2 - LDX - Immediate

83 - Future Expansion A3 - Future Expansion

84 - STY - Zero Page A4 - LDY - Zero Page

85 - STA - Zero Page AS - LDA - Zero Page

86 - STX - Zero Page A6 - LDX - Zero Page

87 - Future Expansion A7 - Future Expansion

88 - DEY A8 - TAY

89 - Future Expansion A9 - LDA - Immediate

8A - TXA AA - TAX

8B - Future Expansion AB - Future Expansion

8C - STY - Absolute AC - LDY - Absolute

8D - STA - Absolute AD - LDA - Absolute

8E - STX - Absolute AE - LDX - Absolute

8F - Future Expansion AF - Future Expansion

90 - BCC B0 - BCS

91 - STA - (Indirect),Y B1 - LDA - (Indirect),Y

92 - Future Expansion B2 - Future Expansion

93 - Fuure Expansion B3 - Future Expansion

94 - STY - Zero Page,X B4 - LDY - Zero Page,X

95 - STA - Zero Page,X B5 - LDA - Zero Page,X

96 - STX - Zero Pge,Y B6 - LDX - Zero Page,Y

97 - Future Expansion B7 - Future Expansion

98 - TYA B8 - CLV

99 - STA - Absolute,Y B9 - LDA - Abso1ute,Y

9A - TXS BA - TSX

9B - Future Expansion BB - Future Expansion

9C - Future Expansion BC - LDY - Abso1ute,X

9D - STA - Absolute,X BD - LDA - Absolute,X

9E - Future Expansion BE - LDX - Abso1ute,Y

9F - Future Expansion BF - Future Expansion

258 BASICTO MACHINELANGUAGE

c0 - Cpy - Iwmediate E - CPX - Immediate

Cl - CMP - (Indirect, X) El - SBe - (Indirect,X)

C2 - Future Expansion E2 - Future Expansion

C3 - Future Expansion E3 - Future Expansion

C4 - CPY - Zero Page E4 - CPX - Zero Page

C5 - CMF - Zero Page E5 - SBC - Zero Page

C6 - DEC - Zero Page E6 - INC - Zero Page

e7 - Future Expansion E7 - Future Expansion

C8 - INY E8 - INX

C9 - CMP - Immediate Eg - SBC - Immediate

CA - DEX EA - NOP

CB - Future Expansion EB - Future Expansion

ec - CPY - Absolute EC - CPX - Absolute

CD - CMP - Absolute ED - SBC - Absolute

CE - DEC - Absolute EE - INC - Absolute

CF - Future Expansion EF - Future Expansion

D0 - BNE F0 - BEQ

Dl - CMP - (Indirect},Y Fl - SBC - (Indirect),Y

D2 - Future Expansion F2 - Future Expansion

D3 - Future Expansion F3 - Future Expansion

D4 - Future Expansion F4 - Future Expansion

D5 - eMP - Zero Page,X F5 - SBC - Zero Page,X

D6 - DEC - Zero Page,X F6 - INC - Zero Page,X

D7 - Future Expansion F7 - Future Expansion

D8 - CLD F8 - SED

D9 - eMP - Absolute,Y F9 - SBC - Absolute,Y

DA - Future Expansion FA - Future Expansion

DB - Future Expansion FE - Future Expansion

DC - Future Expansion FC - Future Expansion

DD - CMF - Absolute,X FD - SBC - Absolute,X

DE - DEC - Absolute,X FE - INC - Absolute,X

DF - Future Expansion FF - Future Expansion

BASICTO MACHINELANGUAGE 259

MEMORY MANAGEMENT ON THE
COMMODORE 64

The Commodore 64 has 64K bytes of RAM. It also has 20K bytes of
ROM, containing BASIC, the operating system, and the standard char-
acter set. It also accesses input/output devices as a 4K chunk of mem-
ory. How is this all possible on a computer with a 16-bit address bus,
that is normally only capable of addressing 64K?

The secret is in the 6510 processor chip itself. On the chip is an input/
output port. This port is used to control whether RAM or ROM or I/O will
appear in certain portions of the system's memory. The port is also used
to control the Datassette TM,so it is important to affect only the proper
bits.

The 6510 input/output port appears at location 1. The data direction

register for this port appears at location O. The port is controlled like any
of the other input/output ports in the system . . . the data direction
controls whether a given bit will be an input or an output, and the actual
data transfer occurs through the port itself.

The lines in the 6510 control port are defined as follows:

The proper value for the data direction register is as follows:

BITS 5 4 3 2 1 0

1 0 1 1 1 1

(where 1 is an output, and 0 is an input).

260 BASIC TO MACHINE LANGUAGE

NAME BIT DIRECTION DESCRIPTION

LORAM 0 OUTPUT Control for RAM/ROM at
$AOOO-$BFFF (BASIC)

HIRAM 1 OUTPUT Control for RAM/ROM at

$EOOO-$FFFF(KERNAl)
CHAREN 2 OUTPUT Control for I/O/ROM at

$DOOO-$DFFF
3 OUTPUT Cassette write line
4 INPUT Cassette switch sense
5 OUTPUT Cassette motor control

This gives a value of 47 decimal. The Commodore 64 automatically
sets the data direction_ register to this value.

The control lines, in general, perform the function given in their de-
scriptions. However, a combination of control lines are occasionally used
to get a particular memory configuration.

LORAM (bit 0) can generally be thought of as a control line which
banks the 8K byte BASIC ROM in and out of-the microprocessor address
space. Normally, this line is HIGH for BASIC operation. If this line is
programmed LOW; the BASIC ROM will disappear from the memory
map and b~ replaced by 8K bytes of RAM from $AOOO-$BfFF.

HIRAM (bit 1) can generally be thought of as a control line which
banks the 8K byte KERNALROM in and out of the microprocessor ad-
dress space. Normally, this line is HIGH for BASIC operation. If this line
is programmed LOW, the KERNALROM will disappear from the memory
map and be replaced- by 8K bytes of RAM from $EOOO-$FFFF.

CHAREN (bit 2) is used only to bank the 4K byte character generator
ROM in or out of the microprocessor address space. From the processor
point of view, the character ROM occupies the same address space as
the I/O devices ($DOOO-$DFFF). When the CHAREN line is set to 1 (as is
normal), the I/O devices appear in the microprocessor address space,
and the character ROM is not accessable. When the CHAREN bit is

cleared to 0, the character ROM appears in the processor address
space, and the I/O devices are not accessable. (The microprocessor only
needs to access the character ROM when downloading the character set
from ROM to RAM. Special care is needed for this . . . see the section
on PROGRAMMABLECHARACTERSin the GRAPHICS chapter). CHAREN
can be overridden by other control lines in certain memory
configurations. CHAR EN will have no effect on any memory
configuration without I/O devices. RAM will appear from $DOOO-$DFFF
instead.

NOTE: In any memory. map containing-ROM, a WRITE (a POKE) to a ROM location will
stare data in the RAM "under" the ROM. Writing to a ROM location stores data in the

"hidden" RAM. For example. this allows a hi-resolution screen to be kept underneath
a ROM, and be changed without- having to bank the screen back into the processor

address space. Of course a READ of a ROM location will return the contents of the
ROM, not the "hidden" RAM.

BASIC TO MACHINE LANGUAGE 261

COMMODORE 64 FUNDAMENTALMEMORY MAP

I/O BREAKDOWN

DOOO-D3FF

D400-D7FF

D800-DBFF

DCOO-DCFF

DDOO-DDFF

DEOO-DEFF

DFOO-DFFF

EOOO-FFFF

DOOO-DFFF

COOO-CFFF

AOOO-BFFF

8000~9FFF

4000-7FFF

0000-3FFF

VIC (Video Controller)

SID (Sound Synthesizer)
Color RAM

CIA1 (Keyboard)
CIA2 (Serial Bus, User Port/RS--232)

Open I/O slot #1 (CP/M Enable)
Open I/O slot #2 (Disk)

262 BASIC TO MACHINE LANGUAGE

1K Bytes
1K Bytes

1K Nybbles
256 Bytes
256 Bytes
256 Bytes
256 Bytes

8K KERNAL ROM
OR

RAM

4K I/O OR RAM OR
CHARACTER ROM

4K RAM

8K BASIC ROM
OR

RAM
OR

ROM PLUG.IN

8K RAM
OR

ROM PLUG.IN

16K RAM

16K RAM

The two open I/O slots are for general purpose user I/O, special pur-

pose I/O cartridges (such as IEEE), and have been tentatively.designated
for -enabling the Z-80 cartridge (CP/M option) and for interfacing to a
low-cost high~speed disk. system.

.The system provides for "auto-start" of the program in a Commodore

64 Expansion Cartridge. The cartridge program is started if the first nine
bytes of the cartridge ROM starting at location 32768 ($8000) contain
specific data. The first two bytes must hold the Cold Start vector to be

used by the cartridge program. The next two bytes at 32770 ($8002)

must be the Warm Start vector used by the cartridge program. The next
three bytes must be the letters, CBM; with bit 7 set in each letter. The
last two bytes must be the digits "80" in PET ASCII.

COMMODORE 64 MEMORY MAPS

The following tables list the various memory :configurations available
on the COMMODORE 64, the states of the control lines which select each

memory map, and .the intended use of each map.

EOOO

DOOO

COOO

AOOO

8000.

4000

0000

x =DON'TCARE
o = LOW
1 =HIGH

LORAM = 1
HIRAM = 1
GAME = 1
EXROM = 1

This is Ihe default BASIC memory
map whiCh provides BASIC 2.0 and
38K contiguous bytes of user RAM.

BASIC TO MACHINE LANGUAGE. 263

8KKERNAL ROM

4KI/O

4K RAM (BUFFER)

8K BASIC ROM

8K RAM

16K RAM

16K RAM

EOOO

0000

COOO

8000

4000

0000

EOOO

0000

COOO

8000

4000

264 BASIC TO MACHINE LANGUAGE

0000

x = DON'T CARE
o = LOW
1 = HIGH

LORAM = 1
HIRAM = 0
GAME = 1
EXROM = X
OR
LORAM' = 1
HIRAM = 0
GAME = 0
(THE CHARACTER ROM
IS NOT ACCESSIBLE BY
THE CPU IN THIS MAP)
EX ROM. = 0

This map provides 60K bytes of
RAM and I/O devices. The user
must write his own I/O driver
routines.

x = DON'T CARE
o = LOW
1 = HIGH

LORAM
HIRAM
GAME
EXROM

o
1
1
X

This map is intended for use with
soft load. languages (including
CP/M), providing 52K contiguous
bytes of user RAM, I/O devices,
and I/O driver routines.

8K RAM

4KI/O

4K RAM

16K RAM

16K RAM

16K RAM

8K KERNAL ROM

4KI/O

4K RAM

16K RAM

16K RAM

16K RAM

EOOO

0000

COoo

AOOO

8000

4000

0000

x = DON'T CARE
O=lOW
1 = HIGH

LORAM = 1
HIRAM = 1
GAME = 1
EXROM = 0

This is the standard configuration
for a BASIC system with a BASIC
expansion ROM. This map provides
32K contiguous bytes of user RAM
and up to 8K bytes of BASIC
"enhancement. ..

BASIC TO MACHINE LANGUAGE 265

x = DON'TCARE
O=lOW

I

16K RAM

I

1 = HIGH

LORAM = 0
COOO HIRAM = 0

GAME = 1
EXROM = X

16KRAM I OR
LORAM = 0
HIRAM = 0

8000

I I

GAME =X
EXROM = 0

16KRAM

4000

16KRAM I This mapgivesaccessto all 64K
bytes of RAM.The1/0devices
must be bankedbackinto the
processor'saddressspacefor any

0000 . . I/O operation.

8K KERNAL ROM

4KI/O

4K RAM (BUFFER)

8K BASIC ROM

8K ROM CARTRIDGE
(BASIC EXP)

16K RAM

16K RAM

EOOO

0000

COOO

AOOO

8000

4000

0000

EOOO

0000

COOO

8000

4000

0000

266 BASIC TO MACHINE LANGUAGE

x = DON'T CARE
o = LOW
1 = HIGH

LORAM = 0
HIRAM = 1
GAME = 0
EXROM = 0

This map provides 40K contiguous
bytes of user RAMand up to 8K
bytes of plug.in ROM for special
ROM.based applications which don't
require BASIC.

x = DON'TCARE
o = LOW
1 = HIGH

LORAM = 1
HIRAM = 1
GAME = 0
EXROM = 0

This map provides 32K contiguous
bytes of user RAM and up to 16K
bytes of plug.in ROM for special
ROM.based applications which don't
require BASIC (word processors,
other languages, etc.).

8K KERNAL ROM

4KII0

4K RAM (BUFFER)

8K ROM (CARTRIDGE)

8K RAM

16K RAM

16K RAM

8K KERNAL ROM

4KIJO

4K RAM (BUFFER)

16K ROM (CARTRIDGE)

16K RAM

16K RAM

EOOO

DOOO

COOO

AOOO

8000

4000

1000

0000

x = DON'TCARE
o = LOW
1 = HIGH

LORAM = X
HIRAM = X
GAME = 0
EXROM = 1

This is the ULTIMAX video game
memory map. Note that the 2K
byte "expansion RAM" for the
ULTIMAX, if required, is accessed
out of the COMMODORE 64 and any
RAM in the cartridge is ignored.

BASIC TO MACHINE LANGUAGE 267

8K CARTRIDGE ROM

4KI/O

4K OPEN

8K OPEN

8K CARTRIDGE ROM

16K OPEN

12K OPEN

4K RAM

THE KERNAL

One of the problems facing programmers in the microcomputer field
is the question of what to do when changes are made to the operating
system of the computer by the company. Machine language programs
which took much time to develop might no longer work, forcing major
revisions in the program. To alleviate this problem, Commodore has
developed a method of protecting software writers called the KERNAL.

Essentially, the KERNALis a standardized JUMP TABLEto the input,
output, and memory management routines in the operating system. The
locations of each routine in ROM may change as the system is up-
graded. But the KERNALjump table will always be changed to match. If
your machine language routines only use the system ROM routines
through the KERNAL,it will take much less work to modify them, should
that need ever arise.

The KERNALis the operating system of the Commodore 64 computer.
All input, output, and memory management is controlled by the
KERNAL.

To simplify the machine language programs you write, and to make
sure that future versions of the Commodore 64 operating system don't
make your machine language programs obsolete, the KERNALcontains
a jump table for you to use. By taking advantage of the 39 input/output
routines and other utilities available to you from the table, not only do
you save time, you also make it easier to translate your programs from
one Commodore computer to another.

The jump table is located on the last page of memory, in read-only
memory (ROM).

To use the KERNAl jump table, first you set up the parameters that the
KERNAl routine needs to work. Then JSR (Jump to SubRoutine) to the
proper place in the KERNALjump table. After performing its function,
the KERNAl transfers control back to your machine language program.
Depending on which KERNALroutine you are using, certain registers
may pass parameters back to your program. The particular registers for
each KERNAl routine may be found in the individual descriptions of the
KERNALsubroutines.

268 BASIC TO MACHINE LANGUAGE

A good question at this point is why use the jump table at all? Why
not just JSR directly to the KERNAl subroutine involved? The jump table
is used so that if the KERNAl or BASIC is changed, your machine lan-
guage programs will still work. In future operating systems the routines
may have their memory locations moved around to a different position
in the memory map . . . but the jump table will still work correctly!

KERNAL POWER-UP ACTIVITIES

1) On power-up, the KERNAl first resets the stack pointer, and clears
decimal mode.

2) The KERNAl then checks for the presence of an autostart ROM car-
tridge at location $8000 HEX (32768 decimal). If this is present, nor-
mal initialization is suspended, and control is transferred to the car-
tridge code. If an autostart ROM is not present, normal system ini-
tialization continues.

3) Next, the KERNALinitializes all INPUT/OUTPUTdevices. The serial bus
is initialized. Both 6526 -ciA chips are set to the proper values for
keyboard scanning, _and the 60-Hz timer is activated. The -SIDchip is
cleared. The BASIC memory map is selected and the cassette motor
is switched off.

4) Next, the KERNAl performs -a RAMtest , setting the top and bottom of
memory pointers. Also, page zero is initialized, and the tape buffer
is -set up.

The RAM TEST routine is a -nondestructive test starting at location
$0300 and working upward. Once the test has found the first non-
RAM location, the top of RAM has its pointer set. The bottom of
memory is always set to $0800, and the screen setup is always set at
$0400.

5) Finally, theKERNAL performs these other activities. I/O vectors are
set to default values. The indirect jump table in low memory is estab-
lished. The screen is then cleared, and all screen editor variables
reset. Then the indirect at $AOOOis used to start BASIC.

BASIC TO MACHINE LANGUAGE 269

HOW TO USETHE KERNAL

When writing machine language programs it is often convenient to
use the routines which are already part of the operating system for
input/output, access to the system clock, memory management, and
other similar operations. It is an unnecessary duplication of effort to
write these routines over and over again, so easy access to the operat-
ing system helps speed machine language programming.

As mentioned before, the KERNALis a jump table. This is just a col-
lection of JMP instructions to many operating system routines.

To use a KERNALroutine you musHirst make all ofthe preparations that
the routine demands. If one routine says that you must call another
KERNALroutine first, then that routine must be called. If the routine
expects you to put a number in the accumulator, then that number must
be there. Otherwise your routines have little chance of working the way
you expect them to work.

After all preparations are made, you must call the routine by means
of the JSR instruction. All KERNALroutines you can access are structured
as SUBROUTINES, and must end with an RTS instruction. When the
KERNALroutine has finished its task, control is returned to your program
at the instruction after the JSR.

Many of the KERNALroutines return error codes in the status word or
the accumulator if you have problems in the routine. Good programming
practice and the success of your machine language programs demand
that you handle this properly. If you ignore an error return, the rest of
your program might "bomb."

That's all there is to do when you're using the KERNAL.Just these
three simple steps:

1) Set up
2) Call the routine

3) Error handling

270 BASIC TO MACHINE LANGUAGE

The following conventions are used in describing the KERNAlroutines:

-FUNCTION NAME: Name of the KERNAl routine.

-CALL ADDRESS:This is the call address of the KERNAl routine, given
in hexadecimal.

-COMMUNICATIONREG1STERS: Registers listed under this heading
are used to pass parameters to and from the KERNAl routines.

-PREPARATORY ROUTINES:Certain KERNAl routines require that data
be set up -before they can operate. The routines needed are listed
here.

-ERROR RETURNS:A return from a KERNAlroutine with the CARRYset

indicates that an error was encountered in proce.ssing. The ac-
cumulator will contain the number of the error.

-STACK REQUIREMENTS:This is the actual number of stack bytes used
by the KERNAl routine.

-REGISTERS -AFFECTED:All registers used by the KERNAl routine are
listed here.

-.-;DESCRIPTION:A short tutorial on the function ofthe KERNAl routine

is given here.

The list of the KERNAl routines follows.

BASIC TO MACHINE lANGUAGE 271

USER CALLABLE KERNAL ROUTINES

272 BASIC TO MACHINE LANGUAGE

ADDRESS
NAME

HEX DECIMAL
FUNCTION

ACPTR $F.FA5 65445 Input. byte from serial
port.

CHKIN $FFC6. 65478 Open channel for input
CHKOUT $FFC9 65481 Open channel for output
CHRIN $FFCF 65487 Input character from

channel

CHROUT $FFD2 65490 Output character to chan-
nel

ClOUT $FFA8 65448 Output byte to serial port
CINT $FF81 65409 Initialize screen' editor
CLALL $FFE7 65511 Close all channels. and

files

CLOSE $FFC3 65475 Close a specified log ic'aI
file

CLRCHN $FFCC 65484- Close input and. output.
channels

GETIN $FFE4 65508 Get character from

keyboard queue
(keyboard buffer)

10BASE $FFF3 65523 Returns base address of
I/O devices

10lNIT $FF84 6541 2. Initialize input/output
LISTEN $FFB1 65457 Command devices on the

serial bus to LISTEN

LOAD $FFD5 65493 Load RAMfrom a device
MEMBOT $FF9C 65436 Read/set the bottom of

memory
MEMTOP $FF99 65433 Read/set the top of mem-

ory
OPEN $FFCO 65472 Open a logical file

BASIC TO MACHINE LANGUAGE 273

NAME
ADDRESS

FUNCTION
HEX DECIMAL

PLOT $FFFO 65520 Read/set X,Y cursor posi-
tion

RAMTAS $FF87 65415 Initialize RAM, allocate
tape buffer, set screen
$0400

RDTIM $FFDE 65502 Read real time clock
READST $FFB7 65463 Read I/O status word
RESTOR $FF8A 65418 Restore default I/O vectors
SAVE $FFD8 65496 Save RAMto device
SCNKEY $FF9F 65439 Scan keyboard
SCREEN $FFED 65517 Return X,Y organization

of screen
SECOND $FF93 65427 Send secondary address

after LISTEN
SETLFS $FFBA 65466 Set logical, first, and sec-

ond addresses
SETMSG $FF90 65424 Control KERNALmessages
SETNAM $FFBD 65469 Set file name
SETTIM $FFDB 65499 Set real time clock
SETTMO $FFA2 65442 Set timeout on serial bus
STOP $FFE1 65505 Scan stop key
TALK $FFB4 65460 Command serial bus de-

vice to TALK

TKSA $FF96 65430 Send secondary address
after TALK

UDTIM $FFEA 65514 Increment real time clock
UNLSN $FFAE 65454 Command serial bus to

UNLISTEN
UNTLK $FFAB 65451 Command serial bus to

UNTALK

VECTOR $FF8D 65421 Read/set vectored I/O

B-1. Function Name: ACPTR

Purpose: Get data from the serial bus
Call address: $FFA5 (hex) 65445 (decimal)
Communication registers: .A
Preparatory routines: TALK,TKSA
Error returns: See READST
Stack requirements: 13
Registers affected: .A, .X

Description: This is the routine to use when you want to get informa-
tion from a device on the serial bus, like a disk. This routine gets a byte
of data off the serial bus using full handshaking. The data is returned in
the accumulator. To prepare for this routine the TALKroutine must be
called first to command the device on the serial bus to send data

through the bus. If the input device needs a secondary command, it
must be sent by using the TKSA KERNAL routine before calling this
routine. Errors are returned in the status word. The READSTroutine is
used to read the status word.

How to Use:

0) Command a device on the serial bus to prepare to send data to
the Commodore 64. (Use the TALKand TKSA KERNALroutines.)

1) Call this routine (using JSR).
2) Store or otherwise use the data.

EXAMPLE:

;GET A BYTE FROM THE BUS
JSR ACPTR

STA DATA

274 BASIC TO MACHINE LANGUAGE

B-2. Function Name: CHKIN

Purpose: Open a channel for input
Call address: $FFC6 (hex) 65478 (decimal)
Communication registers: .X

Preparatory routines: (OPEN)
Error returns:

Stack requirements: None

Registers affected: .A, .X

Description: Any logical file that has already been opened by the
KERNAL OPEN routine can be defined as an input channel by this
routine. Naturally, the device on the channel must be an input device.
Otherwise an error will occur, and the routine will abort.

If you are getting data from anywhere other than the keyboard, this
routine must be called before using either the CHRIN or the GETIN KER-
NAL routines for data input. If you want to use the input from the
keyboard, and no other input channels are opened, then the calls to this
routine, and to the OPEN routine are not needed.

When this routine is used with a device on the serial bus, it auto-

matically sends the talk address (and the secondary address if one was
specified by the OPEN routine) over the bus.

How to Use:

0) OPEN the logical file (if necessary; see description above).
1) Load the .X register with number of the logical file to be used.
2) Call this routine (using a JSR command).

Possible errors are:

#3: File not open
#5: Device not present
#6: File not an input file

EXAMPLE:

; PREPARE FOR INPUT FROM LOGICAL FILE 2
LDX #2

JSR CHKIN

BASIC TO MACHINE LANGUAGE 275

B-3. Function Name: CHKOUT

Purpose: Open a channel for output
Call address: $FFC9 (hex) 65481 (decimal)
Communication registers: .X
Preparatory routines: (OPEN)
Error returns: 0,3,5,7 (See READST)
Stack requirements: 4+
Registers affected: .A, .X

Description: Any logical file number that has been created by the
KERNALroutine OPEN can be defined as an output channel. Of course,
the device you intend opening a channel to must be an output device.
Otherwise an error will occur, and the routine will be aborted.

This routine must be called before any data is sent to any output
device unless you want to use the Commodore 64 screen as your output
device. If screen output is desired, and there are no other output chan-
nels already defined, then calls to this routine, and to the OPEN routine
are not needed.

When used to open a channel to a device on the serial bus, this
routine will automatically send the LISTENaddress specified by the OPEN
routine (and a secondary address if there was one).

How to Use:

REMEMBER:this routine is NOT NEEDEDto send data to the screen.

0) Use the KERNALOPEN routine to specify a logical file number, a
LISTENaddress, and a secondary address (if needed).

1) Load the .X register with the logical file number used in the open
statement.

2) Call this routine (by using the JSR instruction).

EXAMPLE:

LDX#3
JSRCHKOUT

;DEFINE LOGICAL FILE 3 AS AN OUTPUT CHANNEL

Possible errors are:

#3: File not open
#5: Device not present
#7: Not an output file

276 BASIC TO MACHINE lANGUAGE

B-4. Function Name: CHRIN

Purpose: Get a character from the input channel
Ceill address: $FFCF (hex) 65487 (decimal)
Communication registers: .A
Preparatory routines: (OPEN, CHKIN)
Error returns: 0 (See READST)
Stack requirements: 7+
Registers affected: .A, .X

Description: This routine gets a byte of data from a channel already
set up as the input channel by the KERNALroutine <;:HKIN.If the CHKIN
has NOT been used to defJneanother input channel, then all your ci"ata
is expected ,from the keyboard. The data byte is returned in'the ac-
,cumulator. The channel remains open after the call.

Input from the keyboard is handled in a special way. First, the cursor
is turned on, and blinks until a carriage return is typed on the keyboard.
All characters on .the line (up to 88 characters) are stored in the BASIC
input buffer. These characters can be retrieved one at a time by calling
this routine onc'e .for each character. When the carriage return is re-
trieved, the entire ,line has been processed. The next time this routine is
called, the whole process begins again, Le., by flashing the cursor.

How to Use:

FROM THE KEYBOARD

1) Retrieve a byte of data by calling this routine.
2) Store the data byte.
3) Check if it 'is the last data byte (is it a CR ?).
4) If not, go to step 1.

EXAMPLE:

LDY$#00
RD JSR CHRIN

STA DATA, Y

;PREPARE THE .Y REGISTER TO STORE THE DATA

;STORE THE YTH DATA BYTE IN THE YTH

;LOCATION IN THE DATA,AREA.
INY
CMP #CR
BNE RD

;IS IT A CARRIAGE 'RETURN?

;NO, GET ANOTHER DATA BYTE

BASIC TO MACHINE LANGUAGE 277

EXAMPLE: -

JSR CHRIN

STA DATA

FROMOTHERDEVICES

0) Use the KERNAl OPEN and CHKIN routines.

1) Call this routine (using a JSR instruction).
2) Store the data.

EXAMPLE:

JSR- CHRIN

STA DATA

B-5. Fundion Name: CHROUT

Purpose: Output a character
Call address: $FFD2 (hex) 65490 (decimal)
Communication registers: .A
Preparatory routines: (CHKOUT,OPEN)
Error returns: 0 (See READST)
Stack requirements: 8+
Registers affected: .A

Description: This routine outputs a character to an already opened
channel. Use the KERNAl OPEN and CHKOUT routines to set up the
output channel before calling this routine. If this call is omitted, data is
sent to the default output device (number 3, the screen). The data byte
to be output is loaded into the accumulator, and this routine is called.
The data is then sent to the specified output device. The channel is left
open after the call.

NOTE: Care must be taken when using this routine to send data to a specific serial

device since data will be sent to all open output channels -on the bus. Unless this is
desired, all open output channels on the serial bus other than the intended destination
channel must be closed by a call- to the KERNALCLRCHN routine.

278 BASIC TO MACHINE LANGUAGE

How to Use:

0) Use the CHKOUT KERNAl routine if needed (see description
above).

1) load the data to be output into the accumulator.
2) Call:this routine.

EXAMPLE:

;DUPLICATETHEBASIC INSTRUCTION CMD 4,IA";
lDX #4 ;lOGICAl FilE #4.
JSR CHKOUT ;OPEN CHANNEL OUT
LDA #'A.

JSR CHROUT _;SEND CHARACTER'

8-6. Function Name: ClOUT

Purpose: Transmit a byte over the serial bus

Call address:$FFA8 (hex) 65448 (decimal)

Communication registers: .A

Preparatory routines: LISTEN, [SECOND]
Error returns: See READST

Stack requirements: 5

Registers affected: None

Description: This routine is used- to send information to devices on the

serial bus. A call to this routine will put a data byte onto the serial. bus
using full serial handshaking. Before this routine is called, the LISTEN
KERNAl routine must be used to command a device on the serial bus to

get ready to receive data. (If a device needs a secondary address, it
must also be sent by using the SECOND KERNAl routine.) The ac-
cumulator is loaded with a byte to handshake as data on the serial bus.

A device must be listening or the status word will return a timeout. This

routine always buffers one character. (The routine holds the previous
character to be sent back.) So when a call to the KERNAl UNLSN routine
is made to end the data transmission, the buffered character is sent

with an End Or Identify (EOI) set. Then the UNlSN: command is sent to
the device.

BASIC TO MACHINE LANGUAGE 279

How to Use:

.0) Use the LISTEN KERNAL routine (and the' SECOND routine if
needed).

1) Load the accumulator with a byte of data.
2) Call this routine to send the data byte.

EXAMPLE:

lDA #'X
JSR. ClOUT

;SEND AN X TO THE SERIALBUS

B-7. Function Name: CINT

. Purpose: Initialize screen editor & 6567 video chip
Call address: $FFS:l (hex) 65409 (decimal)
Communication registers: 'None

Preparatory routines: None
Error returns: None

Stack requirements: 4

Registers affected: .A, .X, .Y

Description: This routine sets up the 6567 video controller chip in the
Commodore 64 for normal operation. The KERNALscreen editor is also
initialized. This routine should be called by a Commodore 64 program
cartridge.

How to Use:

1) Call this routine.

EXAMPLE:

JSR CINT
JMP RUN ;BEGIN EXECUTION

280 BASIC TO MACHINE LANGUAGE

B-8. Function Name: CLALL

Purpose: Close all flies
Call address: $FFE7 (hex) 65511 (decimal)
Communication registers: None
Preparatory routines: None
Error returns: None

Stack requirements: 11
Registers affected: .A, .X

Description: This routine closes all open flies. When this routine is
called, the pointers into the open flle table are reset, closing all flies.
Also, the CLRCHN routine is automatically called to reset the I/O chan-
nels.

How to Use:

1} Call this routine.

EXAMPLE:

JSR CLALL iCLOSE ALL FILES AND SELECT DEFAULT I/O CHANNELS

JMP RUN iBEGIN EXECUTION

8-9. Function Name: CLOSE

Purpose: Close a-logical flle
Call address: $FFC3 (hex) 65475 (decimal)
Communication registers: .A
Preparatory routines: None
Error returns: 0,240 (See READST)
Stack requirements: 2+
Registers affected: .A, .X, .Y

Description: This routine is used to close a logical flle after all I/O
operations have been completed on that flle. This routine is called after
the accumulator is loaded with the logical file number to be closed (the
same number used when the flle was opened using the OPEN routine).

BASIC TO MACHINE LANGUAGE 281

How to Use:

1) Load the accumulator with the number of the logical file to be
dosed.

2) Call this routine.

EXAMPLE:

;CLOSE 15
LDA #15
JSR CLOSE

B-10. Function Name: CLRCHN

Purpose: Clear I/O channels

Call address: $FFCC (hex) 65484 (decimal)

Communication registers: None

Preparatory routines: None
Error returns:

Stack requirements: 9

Registers affected: .A, .X

Description: This routine is called to clear all open channels and re-
store the I/O channels to their original default values. It is usually called
after opening other I/O channels (like a tape or disk drive) and using
them for input/output operations. The default input device is 0
(keyboard). The default output device is 3 (the Commodore 64 screen).

If one of the channels to be closed is to the serial port, an UNTALK
signal is sent first to clear the input channel or an UNLISTENis sent to
clear the output channel. By not calling this routine (and leaving lis-
tener(s) active on the serial bus) several devices can receive the same
data from the Commodore 64 at the same time. One way to take ad-
vantage of this would be to command the printer to TALKand the disk to
LISTEN.This would allow direct printing of a disk file.

This routine is automatically called when the KERNALCLALLroutine is
executed.

How to Use:

1) Call this routine using the JSR instruction.

EXAMPLE:

JSR CLRCHN

282 BASIC TO MACHINE LANGUAGE

B-II. Function Name: GETIN

Purpose: Get a character
Call address: $FFE4(hex) 65508 (decimal)
Communication registers: .A
Preparatory routines: CHKIN, OPEN
Error returns: See READST

Stack requirements: 7+
Registers affected: .A (.X, .Y)

Description: If the channel is the keyboard, this subroutine removes
one character from the keyboard queue and returns it as an ASCII value
in the accumulator. If the queue is empty, the value returned in the
accumulator will be zero. Characters are put into the queue auto-
matically by an interrupt driven keyboard scan routine which calls the
SCNKEY routine. The keyboard buffer can hold up to ten characters.
After the buffer is filled, additional characters are ignored until at least
one character has been removed from the queue. If the channel is RS-
232, then only the .A register is used and a single character is returned.
See READST to check validity. If the channel is serial, cassette; or
screen, call BASIN routine.

How to Use:

1) Call this routine using a JSR instruction.
2) Check for a zero in the accumulator (empty buffer).
3) Process the data.

EXAMPLE:

;WAIT FOR A CHARACTER
WAIT JSR GETIN

CMP #0

BEQ WAIT

BASIC TO MACHINE LANGUAGE 283

B-12. Function Name: IOBASE

Purpose: Deflne I/O memory page
Call address: $FFF3 (hex) 65523 (decimal)
Communication registers: .X, .Y
Preparatory routines: None
Error returns:

Stack requirements: 2
Registers affected: .X, .Y

Description: This routine sets the X and Y registers to the address of
the memory section where the memory mapped I/O devices are located.
This address can then be used with an offset to access the memory
mapped I/O devices in the Commodore 64. The offset is the number of
locations from the beginning of the page on which the I/O register you
want is located. The .X register contains the low order address byte,
while the .Y register contains the high order address byte.

This routine exists to provide compatibility between the Commodore
64, VIC-20, and future models of the Commodore 64. If the I/O locations
for a machine language program are set by a call to this routine, they
should still remain compatible with future versions of the Commodore
64, the KERNALand BASIC.

How to Use:

1) Call this routine by using the JSR instruction.
2) Store the .X and the .Y registers in consecutive locations.
3) Load the .Y register with the offset.
4) Access that I/O location.

EXAMPLE:

; SETTHEDATADIRECTIONREGISTEROF THEUSERPORTTO 0 (INPUT)
JSR 10BASE
STXPOINT ;SET BASE REGISTERS
STYPOINT+l
LDY#2
LDA #0 ;OFFSETFOR DDROF THE USERPORT
STA (POINT), Y ;SETDDRTO 0

284 8ASIC TO MACHINE LANGUAGE

8-13. Function Name: lOlNIT

Purpose: Initialize r/o devices
Call Address: $FF84 (hex) 65412 (decimal)
Communication registers: None
Preparatory routines: None
Error returns:
Stack requirements: None
Registers affected: .A, ..X, .Y

Description: This routine initializes all input/output devices and
routines. It is normally called as part of the initialization procedure of a
Commodore- 64 program cartridge.

EXAMPLE:

JSR 10lNIT

B-14. Function Name: LISTEN

Purpose: Command a device on the serial bus to listen
Call Address: $FFB-1 (hex) 65457 (decimai)

Communication registers: .A.

Preparatory routines: None
Error returns: See READST

Stack requirements: None

Registers affected: .A

Description: This routine will command a device on the serial bus to
receive data. The accumulator must be loaded with a device number

between 0 and 31 before calling the routine. LISTENwill OR the number
bit by bit to convert to a listen address, then transmits this data as a
command on the serial bus. The specified device will then go' into listen
mode, and be ready to accept information.

How to Use:

1) Load the accumulator with the number of the device to command
to LISTEN.

2) Call this routine using the JSR instruction.

EXAMPLE:

;COMMAND DEVICE #8 TO LISTEN
LDA #8

JSR LISTEN

BASIC TO MACHINE LANGUAGE 285

8-15. Fundion Name: LOAD

Purpose: load RAM from device

Call address: $FFD5 (hex) 65493 (decimal)
Communication registers: .A, .X,. Y
Preparatory routines: SETlFS, SETNAM
Error returns: 0,4,5,8,9, READST
Stack requirements: None
Registers affected: .A, .X, .Y

Description: This routine lOADs data bytes from any input device di-
rectly into the memory of the Commodore 64. It can also be used for a

verify operation, comparing data from a device with the data already in
memory, while leaving the data stored in RAM unchanged.

The accumulator (.A) must beset to 0 for a LOADoperation, or 1 for a
verify. If the input device is OPENed with a secondary address (SA) of 0
the header information from the device is ignored. In this case, the .X
and .Y.registers must contain the starting address for the load. If the
device is addressed with .a secondary address of 1, then the data is
loaded into memory starting at the location.specified by the header. This
routine returns the address of the highest RAM location loaded.

Before this routine can be called, the KERNAl SETlFS, and SETNAM
routines must be called.

:NOTE: You can NOT LOAD from the keyboard (0), RS-232 (2), or the screen (3).

How to Use:

.0) Call the SETlFS, and SETNAM routines. If a relocated load is de-

sired, use the SETlFS routine to send a secondary address of O.
1) Set the .A register to 0 for load, 1 for verify.
2) If a relocated load is desired, the .X and. Y registers must be set

to the start address for the load.

3) Call the routine using the JSR instruction.

286 BASIC TO MACHINE LANGUAGE

EXAMPLE:

iLOAD A FILE FROM TAPE

LDA #DEVICEl iSET DEVICE NUMBER

LDX #FILENO iSET LOGICAL FILE,NUMBER,

LDY CMDl' iSET SECONDARY ADDRESS
JSR SETLFS

LDA #NAME1-NAME iLOAD .A WITH NUMBER OF

iCHARACTERS IN FILE NAME

iLOAD..X AND .Y WITH

iADDRESS OF
iFILE NAME

NAME
NAME 1

LDY
JSR
LDA
LDX
LDY
JSR
STX
STY
JMP
.BYT

LDX #<NAME

#>NAME
SETNAM
#0
#$FF
#$FF
LOAD
VARTAB
VA RTA B + 1

START
'FILE NAME'

B-16. Function Name: MEMBOT

iSET FLAG FOR A. LOAD
iAlTERNATE START

iEND OF LOAD'

Purpose: Set bottom of memory
Call address: $FF9C (hex) 65436 (decimal)

Communication registers: .X,.Y
Preparatory routines: None
Error returns: None

Stack requirements: None
Registers affected: .X, .Y

Description: This routine is used to set the bottom of the memory. If
the accumulator carry bit is set when this routine is called, a pointer to
the lowest byte of RAM is returned in the .X and .Y registers. On the
unexpanded Commodore 64 the initial value of this pointer is $0800

(2048 in decimal). If the accumulator carry bit is clear (=0) when this

routine is called, the values of the .X and-. Y registers are transferred- to

the low and high bytes, respectively, of the pointer to the beginning of
RAM.

BASIC TO MACHINE LANGUAGE 287

How to Use:

TO READ THE BOTTOM OF RAM

1) Set the carry.
-2) Call this routine.

TO SET THE BOTTOM OF MEMORY

1) Clear the carry.
2) Call this routine.

EXAMPLE:

i MOVE BOTTOM OF MEMORY UP 1 PAGE

SECiREAD MEMORY BOTTOM
JSR 'MEMBOT
INY

CLC iSETMEMORY BOTTOM TO NEW VALUE
JSR ,MEMBOT

8-17. Function Name: MEMTOP

Purpose: Set the top of RAM
Call address: $FF99 (hex) 65433 (decimal)

Communication registers: .X, .Y
Preparatory routines: None
Error returns: None

Stack requirements: 2

Registers affected: .X, .Y

Description: This routine is used to set the top of RAM. When this
routine is called with the carry bit of the accumulator set, the pointer to
the top of RAM.will be loaded into the .X and .Y registers. When this
routine is called with the accumulator carry bit clear, the contents of the
.X 'and .Y registers are loaded in the top .of :memory pointer, changing
the top of memory.

EXAMPLE:

iDEALLOCATE THE RS-232 BUFFER
SEC

JSR 'MEMTOP ;READ TOP OF MEMORY
DEX

CLC

JSR MEMTOP iSET NEW TOP OF'MEMORY

2BB BASIC TO MACHINE LANGUAGE

B-18.Function Name: OPEN

Purpose: Open a logical file
Call address: $FFCO (hex) 65472 (decimal)
Communication registers: None
Preparatory routines: SETLFS,SETNAM
Error returns: 1,2,4,5,6,240, READST
Stack requirements: None
Registers affected: .A, .X, .Y

Description: This routine is used to OPEN a logical file. Once the logi-
cal file is set up, it can be used for input/output operations. Most of the
I/O KERNALroutines call on this routine to create the logical files to
operate on. No arguments need to be set up to use this routine, but both
the SETLFSand SETNAM KERNALroutines must be called before using
this routine.

How to Use:

0) Use the SETLFSroutine.
1) Use the SETNAM routine.
2) Call this routine.

EXAMPLE:

This is an implementation of the BASICstatement: OPEN 15,8,15,"1/0"

LDA #NAME2-NAME
LDY#>NAME
LDX#<NAME
JSR SETNAM
LDA # 15
LDX#8
LDY#15
JSR SETLFS
JSR OPEN
.BYT'I/O'

;LENGTH OF FILE NAME FOR SETLFS

;ADDRESS OF FILE NAME

NAME
NAME2

BASICTO MACHINELANGUAGE 2B9

8-19. Fundion Name: PLOT

Purpose: Set cursor location
Call address: $FFFO (hex) 65520 (decimal)

Communication registers: .A, .X, .Y
Preparatory routines: None
Error returns: None

Stack requirements: 2
Registers affected: .A, .X, .Y

Description: A call to this routine with the accumulator carry flag set
loads the current position of the cursor on the screen (in X,Y coordinates)
into the .Y and.X registers. Y is the column number of the cursor location
(6-39), and X is the row number of the location of the cursor (0-24). A
call with the carry bit clear moves the cursor to X,Y as determined by
the .Y and .X registers.

How to Use:

READING CURSOR LOCATION

1) Set the carry flag.
2) Call this routine.

3) Get the X and Y position from the .Y and .X registers, respectively.

SETTINGCURSOR LOCATION

1) Clear carry flag.
2) Set the .Y and .X registers to the desired cursor location.
3) Call this routine.

EXAMPLE:

; MOVE THE CURSOR TO ROW 10, COLUMN 5 (5,10)
LDX#10
LDY#5
CLC
JSR PLOT

290 BASIC TO MACHINE LANGUAGE

8-20. Function Name: RAMTAS

Purpose: Perform RAM test
Call address: $FF87 (hex) 65415 (decimal)
Communication registers: .A, .X, .Y
Preparatory routines: None
Error returns: None

Stack requirements: 2
Registers affected: .A, .X, .Y

Description: This routine is used to test RAM and set the top and
bottom of memory pointers accordingly. It also clears locations $0000 to
$0101 and $0200 to $03FF. It also allocates the cassette buffer, and sets
the screen base to $0400. Normally, this routine is called as part of the
initialization process of a Commodore 64 program cartridge.

EXAMPLE:

JSR RAMTAS

B-21. Function Name: RDTIM

Purpose: Read system clock
Call address: $FFDE(hex) 65502 (decimal)
Communication registers: .A, .X, .Y
Preparatory routines: None
Error returns: None

Stack requirements: 2
Registers affected: .A, .X, .Y

Description: This routine is used to read the system clock. The clock's
resolution is a 60th of a second. Three bytes are returned by the routine.
The accumulator contains the most significant byte, the X index register
contains the next most significant byte, and the Y index register contains
the least significant byte.

EXAMPLE:

JSR RDTIM
STYTIME

STX TIME+ 1
STA TIME+ 2

TIME *=*+3

BASIC TO MACHINE LANGUAGE 291

B-22. Function Name: READST

Purpose: Read status word
Call address: $FFB7 (hex) 65463 (decimal)

Communication registers: .A
Preparatory routines: None
Error returns: None

Stack requirements: 2
Registers affected: .A

Description: This routine returns the current status of the I/O devices in
the accumulator. The routine is usually called after new communication
to an I/O device. The routine gives you information about device status,
or errors that have occurred during the I/O operation.

The bits returned in the accumulator contain the following information:
(see table below)

292 BASICTO MACHINE LANGUAGE

ST ST TAPE
BIT NUMERIC CASSETTE SERIAURW VERIFY

POSITION VALUE READ + LOAD
0 1 Time out

write
1 2 Time out

read
2 4 Short block Short block
3 8 long block long block
4 16 Unrecoverable Any

read error mismatch
5 32 Checksum Checksum

error error
6 64 End of file Earline
7 -128 End of tape Device not End of

present tape

How to Use:

1) Call this routine.

2) Decode the information in the .A register as it refer-s to your pro-
gram.

EXAMPLE:

;CHECK. FOR END OF FILE DURING READ
JSR READST

AND #6,4
BNE EOF

;CHECK EOF BIT (EOF=END OF FILE)

;BRANCH ON EOF

8-23. Function Name: RESTOR

Purpose: Restore default system and interrupt vectors
Call address: $FF8A (hex) 65418 (decimal)
Preparatory routines: None
Error returns: None
Stack requirements: 2

Registers affected: .A, .X, .Y

Description: This routine restores the default values of all system vec-

tors used in KERNAL and BASIC routines and interrupts. (See the Memory

Map for the default vector contents). The KERNAL VECTOR routine is
used to read and alter individual- system vectors.

How to Use:

1) Call this routine.

EXAMPLE:

JSR RESTOR

8-24. Function Name: SAVE

Purpose: Save memory to a device

Call address: $FFD8 (hex) 65496 (decimal)

Communication registers: .A,.X,.Y

Preparatory routines: SETLFS, SETNAM

Error returns: 5,8,9, READST
Stack requirements: None

Registers affected: .A, .X, .Y

BASICTO MACHINELANGUAGE 293

Description: This routine saves a section of memory. Memory is saved
from an indirect address on page 0 specified by the accumulator to the
address stored in the .X and .Y registers. It is then sent to a logical file
on an input/output device. The SETLFSand SETNAM routines must be
used before calling this routine. However, a file name is not required to
SAVEto device 1 (the Datassette™ recorder). Any attempt to save to
other devices without using a file name results in an error.

"NOTE: Device 0 (the keyboard), device 2 (RS-232), and device 3 (the screen) cannot
be SAVEd to. If the attempt is made, an error occurs, and the SAVE is stopped.

How to Use:

0) Use the SETLFSroutine and the SETNAMroutine (unless a SAVEwith
no file name is desired on "a save to the tape recorder").

1) Load two consecutive locations on page 0 with a pointer to the
start of your save (in standard 6502 low byte first, high byte next
format).

2) Load the accumulator with the single byte page zero offset to the
pointer.

3) Load the .X and .Y registers with the low byte and high byte re-
spectively of the location of the end of the save.

4) Call this routine.

EXAMPLE:

LDA # 1
JSR SETLFS
LDA #0
JSR SETNAM
LDA PROG
STA TXTTAB

LDA PROG + 1

STA TXTTAB + 1

LDX VARTAB

LDY VARTAB+l

LDA #<TXTTAB

JSR SAVE

;DEVICE = 1:CASSETTE

;NO FILE NAME

;LOAD START ADDRESS OF SAVE

; (LOW BYTE)

; (HIGH BYTE)

;LOAD .X WITH LOW BYTE OF END OF SAVE

;LOAD .Y WITH HIGH BYTE

;LOAD ACCUMULATOR WITH PAGE 0 OFFSET

294 BASICTO MACHINELANGUAGE

B-25. Function Name: SCNKEY

Purpose: Scan the keyboard
Call address:$FF9F (hex) 65439 (decimal)
Communication registers: None
Preparatory routines: IOINIT
Error returns: None
Stack requirements: 5
Registers affected: .A, .X, .Y

Description: This routine scans the Commodore 64 keyboard and
checks for pressed keys. It is the same routine called by the interrupt
handler. If a key is down, its ASCII value is placed in the keyboard
queue. This routine is called only if the normal IRQ interrupt is bypassed.

How to Use:

1) Call this routine.

EXAMPLE:

GET JSR SCNKEY
JSR GETIN
CMP #0
BEQ GET
JSR CHROUT

iSCANKEYBOARD

iGET CHARACTER

ilS IT NULL?

iYES . . . SCAN AGAIN
iPRINT IT

8-26. Function Name: SCREEN

Purpose: Return screen format
Call address: $FFED(hex) 65517 (decimal)
Communication registers: .X,. Y
Preparatory routines: None
Stack requirements: 2
Registers affected: .X, .Y

Description: This routine returns the format of the screen, e.g., 40
columns in .X and 25 lines in .Y. The routine can be used to determine

what machine a program is running on. This function has been im-.
plemented on the Commodore 64 to help upward compatibility of your
programs.

BASICTO MACHINELANGUAGE 295

How to Use:

1) Call this routine.

EXAMPLE:

JSR SCREEN

STX MAXCOL

STY MAXROW

8-27. Function Name: SECOND

Purpose: Send secondary address for LISTEN
Call address: $FF93 (hex) 65427 (decimal)
Communication registers: .A
Preparatory routines: LISTEN
Error returns: See READST

Stack requirements: 8
Registers affected: .A

Description: This routine is used to send a secondary address to an
I/O device after a call to the LISTEN routine is made, and the device is

commanded to LISTEN. The routine canNOT be used to send a second-

ary address after a call to the TALK routine.
A secondary address is usually used to give setup information to a

device before I/O operations begin.

When a secondary address is to be sent to a device on the serial bus,
the address must first be ORed with $60.

How to Use:

1) Load. the accumulator with the secondary address to be sent.
2) Call this routine.

EXAMPLE:

;ADDRESS DEVICE #8 WITH COMMAND (SECONDARY ADDRESS) #15
LDA #8

JSR LISTEN

LDA #15

JSR SECOND

296. BASIC TO MACHINE LANGUAGE

8-28. Function Name: SETLFS

Purpose: Set up a logical file
Call address: $FFBA (hex) 65466 (decimal)

Communication registers: .A, .X, .Y
Preparatory routines: None
Error returns: None

Stack requirements: 2
Registers affected: None

Description: This routine sets the logical file number, device address,
and secondary address (command number) for other KERNALroutines.

The logical file number is used by the system as a key to the file table
created by the OPEN file routine. Device addresses can range from 0 to
31. The following codes are used by the Commodore 64 to stand for the
CBM devices listed below:

ADDRESS DEVICE

o Keyboard
1 Datassette™ #1
2 RS-232Cdevice
3 CRTdisplay
4 Serial bus printer
8 CBM serial bus disk drive

Device numbers 4 or greater automatically refer to devices on the
serial bus.

A command to the device is sent as a secondary address on the serial
bus after the device number is sent during the serial attention handshak-
ing sequence. If no secondary address is to be sent, the. Y index regis-
ter should be set to 255.

How to Use:

1) Load the accumulator with the logical file number.
2) Load the .X index register with the device number.'
3) Load the .Y index register with the command.

BASIC TO MACHINE LANGUAGE 297

EXAMPLE:

FOR LOGICAL FILE32, DEVICE#4, AND NO COMMAND:
LDA #32
LDX #4
LDY#255
JSRSETLFS

8-29. Function Name: SETMSG

Purpose: Control system message output
Call address: $FF90 (hex) 65424 (decimal)
Communication registers: .A
Preparatory routines: None
Error returns: None
Stack requirements: 2
Registers affected: .A

Description: This routine controls the printing of error and control mes-
sages by the KERNAL.Either print error messages or print control mes-
sages can be selected by setting the accumulator when the routine is
called. FILENOT FOUND is an example of an error message. PRESS
PLAYON CASSETTEis an example of a control message.

Bits 6 and 7 of this value determine where the message will come
from. If bit 7 is 1, one of the error messages from the KERNALis printed.
If bit 6 is set, control messages are printed.

How to Use:

1) Set accumulator to desired value.

2) Call this routine.

EXAMPLE:

LDA #$40
JSRSETMSG

LDA #$80
JSRSETMSG
LDA #0
JSRSETMSG

jTURN ON CONTROL MESSAGES

jTURN ON ERROR MESSAGES

;TURN OFF ALL KERNAL MESSAGES

298 BASIC TO MACHINE LANGUAGE

B-30. Function Name: SETNAM

Purpose: Set up file name
Call address: $FFBD (hex) 65469 (decimal)

Communication registers: .A, .X, .Y
Preparatory routines: None
Stack requirements: None
Registers affected: None

Description: This routine is used to set up the file name for tbe OPEN,
SAVE, or LOAD routines. The accumulator must be loaded with the
length of the file name. The .X and .Y registers must be loaded with the
address of the file name, in standard 6502 low-byte/high-byte format.
The address can be any valid memory address in the system where a
string of characters for the file name is stored. If no file name is desired,
the accumulator must be set to 0, representing a zero file length. The .X
and .Y registers can be set to any memory address in that case.

How to Use:

1) Load the accumulator with the length of the file name.
2) Load the .X index register with the low order address of the file

name.

3) Load the .Y index register with the high order address.
4) Call this routine.

EXAMPLE:

LDA #NAME2-NAME

LDX #<NAME

LDY#>NAME
JSR SETNAM

;LOAD LENGTH OF FILE NAME

;LOAD ADDRESS OF FILE NAME

B-31. Function Name: SETTIM

Purpose: Set the system clock
Call address: $FFDB (hex) 65499 (decimal)
Communication registers: .A, .X, .Y

Preparatory routines: None
Error returns: None

Stack requirements: 2
Registers affected: None

BASIC TO MACHINE LANGUAGE 299

Description: A system clock is maintained by an interrupt routine that
updates the clock every 1/6Oth of a second (one "jiffy"). The clock is
three bytes long, which gives it the capability to count up to 5,184,000
jiffies (24 hours). At that point the clock resets to zero. Before calling this
routine to set the clock, the accumulator must contain the most

significant byte, the .X index register the next most significant byte, and
the .Y index register the least significant byte of the initial time setting
(in jiffies).
How to Use:

1) load the accumulator with the MSB of the 3-byte number to set the
clock.

2) load the .X register with the next byte.
3) load the .Y register with the lSB.
4) Call this routine.

EXAMPLE:

;SET THE CLOCK TO 10 MINUTES = 3600 JIFFIES

lDA #0 ; MOST SIGNIFICANT
LDX #>3600

LDY #<3600 ; LEAST SIGNIFICANT
JSR SETTIM

8-32. Function Name: SETTMO

Purpose: Set IEEEbus card timeout flag
Call address: $FFA2 (hex) 65442 (decimal)
Communication registers: .A
Preparatory routines: None
Error returns: None

Stack requirements: 2
Registers affected: None

NOTE: This routine is used ONLY with an IEEEadd-on card!

Description: This routine sets the timeout flag for the IEEEbus. When
the timeout flag is set, the Commodore 64 will wait for a device on the
IEEE port for 64 milliseconds. If the device does not respond to the
Commodore 64's Data Address Valid (DAV)signal within that time the

Commodore 64 will recognize an error condition and leave the hand-
shake sequence. When this routine is called when the accumulator con-
tains a 0 in bit 7, timeouts are enabled. A 1 in bit 7 will disable the
timeouts.

300 BASIC TO MACHINE LANGUAGE

NOTE: The Commodore 64 uses-the timeout feature to communicate that a disk:fileis

not found- on an -attempt to OPEN a ,file only with an IEEEcard.

How to Use:

TO SET THE TIMEOUTFLAG
I) Set :bit 7 of the accumulator to ,0.
2) Call this routine.

TO RESETTHE TIMEOUTFLAG

I) Set bit 7 of the accumulator tol.
2) Call this routine.

EXAMPLE:

;DLSABLETIMEOUT
LDA #0
JSRSETTMO

'8-33. Function Name: STOP

Purpose: Check if III key is pressed
Call address: $FFEI (hex) 65505 (decimal)

Communication registers: .A
Preparatory routines: None
Error returns: None

Stack requirements: None
Registers affected: .A, .X

Description: If .the 11I1I key on the keyboard was pressed during
a UDTIM call, this call returns the Z flag set. In addition; the channels
will be reset to default values. All other flags remain unchanged. If

the'. key is .not pressed then the accumulator will'contain a byte
representing the.last row of the keyboard scan. The user can also check
for certain other keys this way.

How to Use:

0) UDTIM should be called before this routine.
I) Call this routine.
2) Test for the z.ero flag.

BASICTO MACHINELANGUAGE 301

EXAMPLE:

JSR UDTIM ;SCAN FORSTOP
JSRSTOP
BNE *+5 ;KEYNOT DOWN

JMP READY ; = . . . STOP

B-34. Function Name: TALK

Purpose: Command a device on the serial bus to TALK
Call address: $FFB4 (hex) 65460 (decimal)

Communication registers: .A
Preparatory routines: None
Error returns: See READST

Stack requirements: 8
Registers affected: .A

Description: To use this routine the accumulator must first be loaded
with a device number between 0 and 31. When called, this routine then
ORs bit by bit to convert this device number to a talk address. Then this
data is transmitted as a command on the serial bus.

How to Use:

1) Load the accumulator with the. device number.
2) Call this routine.

EXAMPLE:

;COMMAND DEVICE#4 TO TALK
'LDA #4
JSRTALK

8-35. Function Name: TKSA

Purpose: Send a secondary address to a device commanded to TALK
Call addr.ess: $FF96 (hex) 65430 (decimal)

Communication registers: .A
Preparatory routines: TALK
Error returns: See READST

Stack requirements: 8
Registers affected: .A

302 BASIC TO MACHINE LANGUAGE

Description: This routine transmits a secondary address on the serial
bus for a TALKdevice. This routine must be called with a number be-
tween 0 and 31 in the accumulator. The routine sends this number as a

secondary address command over the serial bus. This routine can only
be called after a call to the TALKroutine. It will not work after a LISTEN.

How to Use:

0) Use the TALK routine.

1) Load the accumulator with the secondary address.
2) Call this routine.

'EXAMPLE:

;TELLDEVICE#4 TO TALKWITH COMMAND #7
LDA #4
JSR TALK
LDA #7
JSR TALKSA

8-36. Function Name: UDTlM

Purpose: Update the system clock
Call address: $FFEA (hex) 65514 (decimal)
Communication registers: None
Preparatory routines: None
Error returns: None

Stack requirements: 2
Registers affected: .A, .X

Description: This routine updates the system clock. Normally this
routine is called by the normal KERNALinterrupt routine every 1/60th of
a second. If the user program processes its own interrupts this routine
must be called to update the time. In addition, the 11:I key routine
must be called, if the 11:I key is to remain functional.

How to Use:

1) Call this routine.

EXAMPLE:

JSR UDTIM

BASIC TO MACHINE LANGUAGE 303

8-37. Function Name: UNLSN

Purpose: Send an UNLISTENcommand
Call address: $FFAE (hex) 65454 (decimal)
Communication registers: None
Preparatory routines: None'
Error returns: See READST

Stack requirements: 8
Registers affected: .A

Description: This routine commands all devices on the' serial bus to
stop receiving data from ,the Commodore 64 (Le., UNLISTEN).Calling
this routine results in an, UNLISTENcommand being transmitted on the
serial bus. Only devices previously commanded to listen are affected.
This routine is ,normally used after the Commodore 64 is finished sending,
data to external devices. Sending the UNLISTENcommands the listening,
devices to get off the, serial bus so it can be used for other purposes.

How to Use:

1) Call this routine.

EXAMPLE:

JSR UNLSN

8-38. Function Name: UNTLK

Purpose: Send an UNTALKcommand'
Call address: $FFAB (hex) 65451 (decimal)
Communication registers: None
Preparatory routines: None
Error returns: See READST

Stack requirements: 8
Registers affected: .A

DesCI'iption: This routine transmits an UNTALKcommand on the serial
bus. All devices previously set to TALKwill stop sending data when this
command .is received.

How to' Use:

1) Call this routine.

EXAMPLE:

JSR UNTALK

304' BASIC TO. MACHINE LANGUAGE,

8-39. Function Name: VECTOR

Purpose: Manage RAM vectors
Call address: $FF8D (hex) 65421 (decimal)
Communication registers: .X,.Y
Preparatory routines: None
Error returns: None

Stack requirements: 2
Registers affected: .A, .X, .Y

Description: This routine manages all system vector jump addresses
stored in RAM. Calling this routine with the the accumulator carry bit set
stores the current contents of the RAM vectors in a list pointed to by the
.X and .Y registers. When this routine is called with the carry clar, the
user list pointed to by the .X and. Y registers is transferred to the system
RAM vectors. The RAM vectors are listed in the memory map.

NOTE: This routine requires caution in its use. The best way to use it is to first read the

entire vector contents into the user area, alter the desired vectors, and then copy the
contents bock to the system vectors.

How to Use:

READ THE SYSTEM RAM VECTORS

1) Set the carry.
2) Set the .X and .y registers to the address to put the vectors.
3) Call this routine.

LOAD THE SYSTEMRAM VECTORS

1) Clear the carry bit.
2) Set the .X and .Y registers to the address of the vector list in RAM

that must be loaded.
3) Call this routine.

BASIC TO MACHINE LANGUAGE 305

EXAMPLE:

;CHANGE THE INPUT ROUTINES TO NEW SYSTEM
LDX#<USER
LDY#>USER
SEC

JSR VECTOR ;READ OLD VECTORS
LDA #<MYINP ;CHANGE INPUT
STA USER+l0
LDA #>MYINP
STA USER+ 11
LDX#<USER
LDY#>USER
CLC

JSR VECTOR ;ALTERSYSTEM

USER * =* +26

ERROR CODES

The following is a list of error messages which can occur when using
the KERNALroutines. If an error occurs during a KERNALroutine, the
carry bit of the accumulator is set, and the number of the error message
is returned in the accumulator.

NOTE: Some KERNAll/O routines do not use these codes for error messages. Instead,

errors are identified using the KERNAl READST routine.

306 BASIC TO MACHINE LANGUAGE

NUMBER MEANING

0 Routine terminated by the" key
1 Too many open files
2 File already open
3 File not open
4 File not found
5 Device not present
6 File is not an input file
7 File is not an output file
8 File name is missing
9 Illegal device number

240 Top-of-memory change RS-232 buffer allocation/deallocation

USING MACHINE LANGUAGE FROM BASIC

There are several methods of using BASIC and machine language on

the Commodore 64, including special statements as part of CBM BASIC
as well as key locations in the machine. There are five main ways to use

machine language routines from BASIC on the Commodore 64. They
are:

1) The BASIC SYS statement

2) The BASIC USR function

3) Changing one of the RAM I/O vectors

4) Changing one of the RAM interrupt vectors

5) Changing the CHRGET routine

1) The BASIC statement SYS X causes a JUMP to a machine language
subroutine located at address X. The routine must end with an RTS

(ReTurn from Subroutine) instruction. This will transfer control back
to BASIC.

Parameters are generally passed between the machine lan-

guage routine and,the BASIC program using the BASIC PEEK and

POKE statements, and their machine language equivalents.
The SYS command is the most useful method of combining

BASIC with machine language. PEEKs and POKEs make multiple
parameter passing easy. There can be many SYS statements in a
program, each to a different (or even the same) machine lan-

guage routine.

2) The BASIC function USR(X) transfers control to the machine lan-

guage subroutine located at the address stored in locations 785

and 786. (The address is stored in standard low-byte/high-byte
fprmat.) The value X is evaluated and passed to the machine lan-

guage subroutine through floating point accumulator #1, located

beginning at address $61 (see memory map for more details). A
value may be returned back to the BASIC program by placing it in
the floating point accumulator. The machine language routine must
end with an RTS instruction to return to BASIC.

Thisstatement is different from the SYS,because you have TOset
up an indirect vector. Also different is the format through which

the variable is passed (floating point format). The indirect vector
must be changed if more than one machine language routine is
used.

BASIC TO MACHINE LANGUAGE 307

3) Any of the input/output or BASIC internal routines accessed through
the vector table located on page 3 (see ADDRESSING MODES,
ZERO PAGE) can be replaced, or amended by user code. Each
2-byte vector consists of a low byte and a high byte address which
is used by the operating system.

The KERNALVECTOR routine is the most reliable way to change
any of the vectors, but a single vector can be changed by POKEs.
A new vector will point to a user prepared routine which is meant
to replace or augment the standard system routine. When the ap-
propriate BASIC command is executed, the user routine will be
executed. If after executing the user routine, it is necessary to exe-
cute the normal system routine, the user program must JMP (JuMP)
to the address formerly contained in the vector. If not, the routine
must end with a RTS to transfer control back to BASIC.

4) The HARDWAREINTERRUPT(IRQ) VECTORcan be changed. Every
1/60th of a second, the operating system transfers control to the
routine specified by this vector. The KERNALnormally uses this for
timing, keyboard scanning, etc. If this technique is used, you
should always transfer control to the normal IRQ handling routine,
unless the replacement routine is prepared to handle the CIA chip.
(REMEMBERto end the routine with an RTI(ReTurnfrom Interrupt)
if the CIA is handled by the routine).

This method is useful for tasks which must happen concurrently
with a BASIC program, but has the drawback of being more
difficult.

NOTE: ALWAYS DISABLE INTERRUPTS BEFORE CHANGING THIS VECTORI

5) The CHRGETroutine is used by BASICto get each character/token.
This makes it simple to add new BASIC commands. Naturally,
each new command must be executed by a user written machine
language subroutine. A common way to use this method is to
specify a character (@ for example) which will occur before any of
the new commands. The new CHRGETroutine will search for the
special character. If none is present, control is passed to the nor-
mal BASIC CHRGETroutine. If the special character is present, the
new command is interpreted and executed by your machine lan-
guage program. This minimizes the extra execution time added by
the need to search for additional commands. This technique is
often called a wedge.

308 BASIC TO MACHINE LANGUAGE

WHERE TO -PUT MACHINE LANGUAGE ROUTINES

The best place for machine langua.ge routines on the Commodore 64
is from $COOO-$CFFF, assuming the routines are smaller than 4K bytes
long. This section of memory is not disturbed by BASIC.

If for some reason _it's not possible or desirable to put the machine
language routine at $COOO,for instance if the routine is larger than 4K
bytes, it then becomes _necessary to reserve an area at the top of mem-
ory from BASIC for the routine. The top of memory is normally$9FFF.
The top of memory can be changed through the KERNAL routine
MEMTOP, or by the following BASIC statements:

10 POKE51,L:POKE52,H:POKE55,L:POKE56,H:CLR

Where Hand L are the high and low portions, respectively, of the new
top of memory. For -example, to reserve the area from $9000 to $9FFF
for machine language, use the following:

10 POKE51,0:POKE52, 144:POKE55,0:POKE56, 144:CLR

HOW TO ENTER MACHINE LANGUAGE

There are 3 common methods to add the machine language pro-

grams to a BASIC program. They are:

1) DATA STATEMENTS:

By READing DATAstatements, and POKEing the values into memory at
the start of the program, machine language routines can be added. This
is the easiest method. No special methods are needed to save the two
parts of the _program, and it is fairly easy to debug. The drawbacks
include taking up more memory space, and the wait while the program
is POKEd in. Therefore, this method is better-for smaller routines.

EXAMPLE:

10 RESTORE: FORX=1 T09:READA: POKE12* 4096 + X,A: NEXT

BASIC PROGRAM

1000 DATA 161, 1,204,204,204,204,204,204,96

- BASIC TO MACHINE LANGUAGE 309

2) MACHINE LANGUAGE MONITOR (64MON):

This program allows you to enter a program in either HEX or SYM-
BOLICcodes, and save the portion of memory the program is in. Advan-
tages of this method include easier entry of the machine language
routines, debugging aids, and a much faster means of saving and load-
ing. The drawback to this method is that it generally requires the BASIC
program to load the machine language. routine from tape or disk when
it is started. (For more details on 64MON see the machine' language
section.)

EXAMPLE:

The following is an example of a BASIC program using a machine
language routine. prepared by 64MON. The routine is stored on tape:

10lF FLAG=l THEN 20
15 FLAG=l:LOAD "MACHINE LANGUAGE ROUTINE NAME",l,l
20

REST OF BASIC PROGRAM

3) EDITOR/ASSEMBLER PACKAGE:

Advantages are similar to using a machine language monitor, but
programs are even easier to enter. Disadvantages are also similar to the
use of a machine language monitor.

COMMODORE 64 MEMORY MAP

310 BASIC TO MACHINE LANGUAGE

LABEL
HEX DECIMAL

DESCRIPTIONADDRESS LOCATION

D6510 0000 0 6510 On-Chip Data-
Direction Register

R6510 0001 1 6510 On-Chip 8-Bit
Input/Output Register

0002 2 Unused

ADRAYl 0003-0004 3-4 Jump Vector: Convert
Floating-Integer

BASICTO MACHINELANGUAGE 311

LABEL
HEX DECIMAL

DESCRIPTIONADDRESS LOCATION

ADRAY2 0005-0006 5-6 Jump Vector: Convert
Integer-Floating

CHARAC 0007 7 Search Character
ENDCHR 0008 8 Flag: Scan for Quote at

End of String
TRMPOS 0009 9 Screen Column From Last

TAB

VERCK OOOA 10 Flag: 0 = Load, 1 = Ver-

ify
COUNT OOOB 11 Input Buffer Pointer / No.

of Subscripts
DIMFlG OOOC 12 Flag: Default Array DI-

Mension

VALTYP OOOD 13 Data Type: $FF = String,
$00 = Numeric

INTFlG OOOE 14 Data Type: $80 = Integer,
$00 = Floating

GARBFL OOOF 15 Flag: DATAscan/liST
quote/Garbage Coli

SUBFlG 0010 16 Flag: Subscript Ref / User
Function Call

INPFlG 0011 17 Flag: $00 = INPUT,$40
= GET, $98 = READ

TANSGN 0012 18 Flag: TAN sign / Compari-
son Result

0013 19 Flag: INPUT Prompt
lINNUM 0014-0015 20- 21 Temp: Integer Value
TEMPPT 0016 22 Pointer: Temporary String

Stack

LASTPT 0017 -0018 23-24 Last Temp String Address
TEMPST 0019-0021 25-33 Stack for Temporary

Strings
INDEX 0022-0025 34-37 Utility Pointer Area
RESHO 0026-002A 38-42 Floating-Point Product of

Multiply
TXTTAB 002B-002C 43-44 Pointer: Start of BASIC

Text

312 BASIC TO MACHINE LANGUAGE

LABEL
HEX DECIMAL

DESCRIPTIONADDRESS LOCATION

VARTAB 002D-002E 45-46 Pointer: Start of BASIC
Variables

ARYTAB 002F-0030 47 -48 Pointer: Start of BASIC

Arrays
STREND 0031...,.0032 49-50 Pointer: End of BASIC Ar-

rays (+ 1)
FRETOP 0033-0034 5.1-52 Pointer: Bottom of String

.Storage
FRESPC 0035-0036 53-54 Utility String Pointer
MEMSIZ 0037 -0038 55-56 Pointer: Highest Address

Used by BASIC
CURLIN 0039-003A 57-58 Current BASIC Line

Number
OLDLIN 003B-003C 59-60 Previous BASIC Line

Number
OLDTXT 003D-003E 61-62 Pointer: BASIC Statement

for CO NT
DATLIN 003F-0040 63-64 Current DATALine

Number
DATPTR 0041-0042 65-66 Pointer: Current DATA

Item Address
INPPTR 0043 -0044 67-68 Vector: INPUT Routine
VARNAM 0045-0046 69-70 Current BASIC Variable

Name
VARPNT 0047 -0048 71-72 Pointer: Current BASIC

Variable Data

FORPNT 0049-004A 73-74 Pointer: Index Variable
for FOR/NEXT

004B-0060 75-96 Temp Pointer / Data Area
FACEXP 0061 97 Floating-Point Accumu-

lator # 1: Exponent
FACHO 0062-0065 98-101 Floating Accum. #.1:

Mantissa
FACSGN 0066 102 Floating Accum. #1: Sign
SGNFLG 0067 103 Pointer.: Series Evaluation

Constant

BASICTO MACHINELANGUAGE 313

LABEL
HEX DECIMAL

DESCRIPTIONADDRESS LOCATION

BITS 0068 104 Floating Accum. # 1:
Overflow Digit

ARGEXP 0069 105 Floating-Point Accumu-
lator #2: Exponent

ARGHO 006A-006D 106-109 Floating Accum. #2:
Mantissa

ARGSGN 006E 110 Floating Accum. #2: Sign
ARISGN 006F 111 Sign Comparison Result:

Accum. #1 vs #2
FACOV 0070 112 Floating Accum. #1.

low-Order (Rounding)
FBUFPT 0071-0072 113-114 Pointer: Cassette Buffer
CHRGET 0073-008A 115-138 Subroutine: Get Next Byte

of BASIC Text

CHRGOT 0079 121 Entry to Get Same Byte of
Text Again

TXTPTR 007A-007B 122-123 Pointer: Current Byte of
BASIC Text

RNDX 008B-008F 139-143 Floating RND Function
Seed Value

STATUS 0090 144 Kernal I/O Status
Word: ST

STKEY 0091 145 Flag: STOP key / RVS key
SVXT 0092 146 Timing Constant for Tape
VERCK 0093 147 Flag: 0 = load, 1 = Ver-

ify
C3PO 0094 148 Flag: Serial Bus-Output

Char. Buffered

BSOUR 0095 149 Buffered Character for
Serial Bus

SYNO 0096 150 Cassette Sync No.
0097 151 Temp Data Area

LDTND 0098 152 No. of Open Files / Index
to File Table

DFlTN 0099 153 Default Input Device (0)
DFlTO 009A 154 Default Output (CMD)

Device (3)

314 BASIC TO MACHINE LANGUAGE

LABEL
HEX DECIMAL

DESCRIPTIONADDRESS LOCATION

PRTY 009B 155 Tape Character Parity
DPSW 009C 156 Flag: Tape Byte-Received
MSGFLG 009D 157 Flag: $80 = Direct Mode,

$00 = Program
PTRl 009E 158 Tape Pass 1 Error Log
PTR2 009F 159 Tape Pass 2 Error Log
TIME 00AO-00A2 160-162 Real-Time Jiffy Clock

(approx) 1/60 Sec
00A3-00A4 163-164 Temp Data Area

CNTDN 00A5 165 Cassette Sync Countdown
BUFPNT 00A6 166 Pointer: Tape I/O Buffer
INBIT 00A7 167 RS-232 Input Bits / Cas-

sette Temp
BITCI 00A8 168 RS-232 Input Bit Count /

Cassette Temp
RINONE 00A9 169 RS-232 Flag: Check for

Start Bit

RIDATA OOAA 170 RS-232 Input Byte
Buffer/Cassette Temp

RIPRTY OOAB 171 RS-232 Input Parity / Cas-
sette Short Cnt

SAL OOAC-OOAD 172-173 Pointer: Tape Buffer/
Screen Scrolling

EAL OOAE-OOAF 174-175 Tape End Addresses/End
of Program

CMPO OOBO-OOB 1 176-177 Tape Timing Constants
TAPEl 00B2-00B3 178-179 Pointer: Start of Tape Buf-

fer

BITTS 00B4 180 RS-232 Out Bit Count /

Cassette Temp
NXTBIT 00B5 181 RS-232 Next Bit to Send/

Tape EOT Flag
RODATA 00B6 182 RS-232 Out Byte Buffer
FNLEN 00B7 183 Length of Current File

. Name
LA 00B8 184 Current Logical File

Number

BASIC TO MACHINE LANGUAGE 315

LABEL
HEX DECIMAL

DESCRIPTIONADDRESS LOCATION

SA 00B9 185 Current Secondary Ad-
dress

FA OOBA 186 Current Device Number
FNADR OOBB-OOBC 187 - 188 Pointer: Current File

Name
ROPRTY OOBD 189 RS-232 Out Parity / Cas-

sette Temp
FSBLK OOBE 190 Cassette Read/Write Block

Count
MYCH OOBF 191 Serial Word Buffer
CASl OOCO 192 Tape Motor 'Interlock
STAL 00CI-00C2 193-194 I/O Start Address
MEMUSS 00C3-00C4 195-196 Tape Load Temps
LSTX 00C5 197 Current Key Pressed:

CHR${n) 0 = No Key
NDX 00C6 198 No. of Chars. in

Keyboard Buffer
(Queue)

RVS 00C7 199 Flag: Print Reverse
Chars.-l =Yes, O=No
Used

INDX 00C8 200 Pointer: End of Logical
Line for INPUT

LXSP 00C9-00CA 201-202 Cursor X-VPos. at Start of
INPUT

SFDX OOCB 203 Flag: Print Shifted Chars.
BLNSW OOCC 204 - Cursor Blink enable: 0 =

Flash Cursor
BLNCT OOCD 205 Timer: Countdown to

Toggle Cursor
GDBLN OOCE 206 Character Under Cursor
BLNON OOCF 207 Flag: Last Cursor Blink

On/Off
CRSW OODO 208 Flag: INPUT or GET from

Keyboard
PNT 00DI-00D2 209-210 Pointer: Current Screen

Line Address

316 BASIC TO MACHINE LANGUAGE

LABEL
HEX DECIMAL

DESCRIPTIONADDRESS LOCATION

PNTR 00D3 211 Cursor Column on Current
Line

QTSW 00D4 212 Flag: Editor in Quote
Mode, $00 = NO

LNMX 00D5 213 Physical Screen Line
length

TBLX 00D6 214 Current Cursor Physical
Line Number

00D7 215 Temp Data Area
INSRT 00D8 216 Flag: Insert Mode, >0 =

INSTs
lDTBl 00D9-00F2 217-242 Screen Line Link Table /

Editor Temps
USER 00F3-00F4 243-244 Pointer: Current Screen

Color RAM loc.
KEYTAB 00F5-00F6 245-246 Vector: Keyboard Decode

Table
RIBUF 00F7-00F8 247-248 RS-232 Input Buffer

Pointer
ROBUF 00F9-00FA 249-250 RS-232 Output Buffer

Pointer
FREKZP OOFB-OOFE 251-254 Free O-Page Space for

User Programs
BASZPT OOFF 255 BASIC Temp Data Area

0100-0lFF 256-511 Micro-Processor System
Stack Area

0100-010A 256-266 Floating to String Work
Area

BAD 0100-013E 256-318 Tape Input Error log
BUF 0200-0258 512-600 System INPUT Buffer
LAT 0259-0262 601-610 KERNAl Table: Active log-

ical File No's.
FAT 0263-026C 611-620 KERNAl Table: Device No.

- for Each File

SAT 026D-0276 621-630 KERNAl Table: Second
Address Each File

KEYD 0277 -0280 631-640 Keyboard Buffer Queue
(FIFO)

BASICTO MACHINELANGUAGE 317

LABEL
HEX DECIMAL

DESCRIPTIONADDRESS LOCATION.

MEMSTR 0281-0282 . 641-642 Pointer: Bottom of Memory
for' O.S.

MEMSIZ 0283-0284 643-644 Pointer: Top of Memory for
O.S.

TIMOUT 0285 645 Flag: Kernal Variable for
IEEE Timeout

COLOR 0286 646 Current Character Color
Code

GDCOl 0287 647 Background Color Under
Cursor

HIBASE 0288 648 Top of Screen Memory
(Page)

XMAX 0289 649 Size of Keyboard Buffer
RPTFLG 028A 650 Flag: REPEATKey. Used,

$80 = Repeat
KOUNT 028B' 651 Repeat Speed CO.unter
DELAY 028C 652 Repeat. Delay Counter
SHFLAG 028D 653 Flag: Keyb'rd SHIFT Key/

CTRLKey/C= Key
LSTSHF 028E 654 Last Keyboard Shift Pat-

tern
KEYLOG 028F-0290 655-656 Vector: Keyboard Table

Setup
MODE 0291 657 Flag: $OO=Disable SHIFT

Keys, $80 = Enable
SHIFT Keys

AUTODN 0292 658 Flag: Auto Scroll Down, 0
= ON.

M51CTR 0293 659 RS-232: 6551' Control

Register Image
M51CDR 0294 660 RS-232: 6551. Command

Register Image
M51AJB 0295-0296 661-662 RS-232 Non-Standard BPS

(Time/2-100) USA
RSSTAT 0297 663 RS-232: 6551 Status Regis-

ter Image
BITNUM 0298 664 RS-232 Number of Bits

Left to Send

318 8ASIC TO MACHINE LANGUAGE

LABEL
HEX 'DECIMAL

DESCRIPTIONADDRESS LOCATJON

BAUDOF 0299-029A 665-666 RS-232 Baud Rate: Full Bit

Time (s)
RIDBE 029B 667 RS-232 Index to End of

Input Buffer
RIDBS 029C 668 RS-232 Start of Input Buf-

fer (Page)
RODBS 029D 669 RS-232 Start of Output

Buffer (Page)
RODBE 029E 670 RS-232 Index to End of

Output Buffer
IRQTMP 029F-02AO 671-672 Holds IRQ Vector During

Tape I/O
ENABL 02A1 673 RS-232 Enables

02A2 674 TOD Sense During Cas-
sette I/O

02A3 675 Temp Storage For Cassette
Read

02A4 .676 Temp D11RQ Indicator For
Cassette Read

02A5 677 Temp For Line Index
02A6 678 PALINTSCFlag, 0=

NTSC, 1= PAL
02A7-02FF 679-767 Unused

IERROR 0300-0301 768-769 Vector: Print BASIC Error

Message
IMAIN 0302-0303 770-771 Vector: BASIC Warm Start

ICRNCH 0304-0305 772-773 Vector: Tokenize BASIC
Text

IQPLOP 0306-0307 774-775 Vector: BASIC Text LIST

IGONE 0308-0309 776-777 Vector: BASIC Char. Dis-

patch
IEVAL 030A-030B 778-779 Vector: BASIC Token

Evaluation

SAREG 030C 780 Storage for 6502 .A Reg-
ister

SXREG 030D 781 Storage for 6502 .X Regis-
ter

I

BASIC TO MACHINE LANGUAGE 319

LABEL
HEX . DECIMAL

DESCRIPTIONADDRESS LOCATION

SYREG 030E 782 Storage for 6502 .Y Regis-
ter

SPREG 030F 783 Storage for 6502 .SP
Register

USRPOK 0310 784 USR Function Jump Instr
(4C)

USRADD 0311-0312 785-786 USR Address Low Byte/
High Byte

0313 787 Unused
CINV 0314-0315 788-789 Vector: Hardware IRQ

Interrupt
CBINV 0316-0317 790-791 Vector: BRKInstr. Interrupt
NMINV 0318-0319 792 -793 Vector: Non-Maskable

Interrupt
IOPEN 031A-031 B 794-795 KERNALOPEN Routine

Vector
IClOSE 031 C-031 D 796-797 KERNAl CLOSE Routine

Vector
ICHKIN 031 E-031 F 798-799 KERNAl CHKIN Routine

Vector
ICKOUT 0320-0321 800-801 KERNAl CHKOUT Routine

Vector
IClRCH 0322-0323 802 - 803 KERNAl ClRCHN Routine

Vector
IBASIN 0324-0325 804-805 KERNAl CHRIN Routine

Vector
IBSOUT 0326-0327 806-807 KERNAl CHROUT Routine

Vector
ISTOP 0328-0329 808-809 KERNAl STOP Routine

Vector
IGETIN 032A-032B 810-811 KERNAl GETIN Routine

Vector
ICLAll 032C-032D 812-813 KERNAl CLAll Routine

Vector
USRCMD 032E-032F 814-815 User-Defined Vector
IlOAD 0330-0331 816-817 KERNAl lOAD Routine

Vector

,

COMMODORE 64 INPUT/OUTPUT ASSIGNMENTS

320 BASIC TO MACHINE LANGUAGE

HEX DECIMAL
LABEL ADDRESS LOCATION DESCRIPTION

ISAVE 0332-0333 818-819 KERNALSAVERoutine Vec-
tor

0334-033B 820-827 Unused
TBUFFR 033C-03FB 828-1019 Tape I/O Buffer

03FC-03FF 1020- 1023 Unused

VICSCN 0400-07FF 1024- 2047 1024 Byte Screen Memory
Area

0400-07E7 1024-2023 Video Matrix: 25 Lines X
40 Columns

07F8-07FF 2040-2047 Sprite Data Pointers
0800-9FFF 2048-40959 .Normal BASIC Program

Space
8000-9FFF 32768:....40959 VSP Cartridge ROM-

8192 Bytes
AOOO- BFFF 40960-49151 BASIC ROM-8192 Bytes

(or 8K RAM)
COOO-CFFF 49152-53247 RAM-4096 Bytes
DOOO-DFFF 53248-57343 Input/Output Devices and

Color RAM
or Character Generator

ROM

or RAM-4096 Bytes
. EOOO-FFFF 57344-65535 KERNALROM-8192

Bytes (or 8K RAM)

HEX DECIMAL BITS DESCRIPTION

0000 0 7-0 MOS 6510 Data Direction

Register (xx101111)
Bit= 1: Output, Bit=O:
Input, x=Don't Care

0001 1 MOS 6510 Micro-Processor

On-Chip I/O Port
0 /LORAM Signal (O=Switch

BASIC ROM Out)

BASIC TO MACHINE LANGUAGE 321

HEX DECIMAL BITS DESCRIPTION

1 /HIRAM Signal (O=Switch
Kernal ROM Out)

2 /CHAREN Signal
(O=Switch Char. ROM
In)

3 Cassette Data Output Line
4 Cassette Switch Sense

1 = Switch Closed

5 Cassette Motor Control
0= ON, 1 = OFF

6-7 Undefined
DOOO-D02E 53248-54271 MOS 6566 VIDEO INTER-

FACE CONTROLLER
(VIC)

DOOO 53248 Sprite 0 X Pos
DOOI 53249 Sprite 0 Y Pos
D002 53250 Sprite 1 X Pos
DOO3 53251 Sprite 1 Y Pos
D004 53252 Sprite 2 X Pos
D005 53253 Sprite 2 Y Pos
D006 53254 Sprite 3 X Pos
D007 53255 Sprite 3 Y Pos
D008 53256 Sprite 4 X Pos
D009 53257 Sprite 4 Y Pos
DOOA 53258 Sprite 5 X Pos
DOOB 53259 Sprite 5 Y Pos
DOOC 53260 Sprite 6 X Pos
DOOD 53261 Sprite 6 Y Pos
DOOE 53262 Sprite 7 X Pos
DOOF 53263 Sprite 7 Y Pos
DOlO 53264 Sprites 0-7 X Pos (msb of

X coord.)
DOn 53265 VIC Control Register

7 Raster Compare: (Bit 8)
See 53266

6
-

Extended Color Text
Mode: 1 = Enable

322 BASICTOMACHINELANGUAGE

HEX DECIMAL BITS DESCRIPTION

5 Bit-Map Mode: 1 = En-
able

4 Blank Screen to Border
Color: 0 = Blank

3 Select 24/25 Row Text

Display: 1 = 25 Rows
2-0 Smooth Scroll to Y Dot-

Position (0-7)
D012 53266 Read Raster / Write Raster

Value for Compare IRQ
D013 53267 Light-Pen latch X Pos
D014 53268 Light-Pen latch Y Pos
D015 53269 Sprite Display Enable:

1 = Enable
D016 53270 VIC Control Register

7-6 Unused

5 ALWAYSSET THIS BIT TO
01

4 Multi-Color Mode: 1 =
Enable (Text or Bit-
Map)

3 Select 38/40 Column Text

Display: 1 = 40 CoIs
2-0 Smooth Scroll to X Pos

D017 53271 Sprites 0-7 Expand 2X
Vertical (Y)

D018 53272 VIC Memory Control Reg-
ister

7-4 Video Matrix Base Ad-
dress (inside VIe)

3-1 Character Dot-Data Base
Address (inside VIe)

D019 53273 VIC Interrupt Flag Regis-
ter (Bit = 1: IRQ Oc-

curred)
7 Set on Any Enabled VIC

IRQ Condition
3 Light-Pen Triggered IRQ

Flag

BASIC TO MACHINE LANGUAGE 323

HEX DECIMAL BITS DESCRIPTION

2 Sprite to Sprite Collision
IRQ Flag

1 Sprite to Background
Collision IRQ Flag

. 0 Raster Compare IRQ Flag
D01A 53274 IRQ Mask Register: 1 =

Interrupt Enabled
D01B 53275 Sprite to Background

Display Priority: 1 =
Sprite

D01C 53276 Sprites 0-7 Multi-Color
Mode Select: 1 =
M.C.M.

D01D 53277 Sprites 0-7 Expand 2X
Horizontal (X)

DOlE 53278 Sprite to Sprite Collision
Detect

D01F 53279 Sprite to Background
Collision Detect

D020 53280 Border Color
D021 53281 Background Color 0
D022 53282 Background Cplor 1
D023 53283 Background Color 2
D024 53284 Background Color 3
D025 53285 Sprite Multi-Color Regis-

ter 0
D026 53286 Sprite Multi-Color Regis-

ter 1
D027 53287 Sprite 0 Color
D028 53288 Sprite 1 Color
D029 53289 Sprite 2 Color
D02A 53290 Sprite 3 Color
D02B 53291 Sprite 4 Color
D02C 53292 Sprite 5 Color
D02D 53293 Sprite 6 Color
D02E 53294 Sprite 7 Color
D400-D7FF 54272-55295 MOS 6581 SOUND

INTERFACEDEVICE

(SID)

324 BASIC TO MACHINE LANGUAGE

HEX DECIMAL BITS DESCRIPTION

D400 54272 Voice 1: Frequency
Control - Low-Byte

D401 54273 Voice 1: Frequency
Control-High-Byte

D402 54274 Voice 1: Pulse Waveform

Width -low-Byte
D403 54275 7-4 Unused

3-0 Voice 1: Pulse Waveform

Width-High-Nybble
D404 54276 Voice 1: Control Register

7 Select Random Noise
Waveform, 1 = On

6 Select Pulse Waveform,
1 = On

5 Select Sawtooth
Waveform, 1 = On

4 Select Triangle Waveform,
1 = On

3 Test Bit: 1 = Disable Os-
cilIator 1

2 Ring Modulate Osc. 1 with
Osc. 3 Output, 1 = On

1 Synchronize Osc. 1 with
Osc. 3 Frequency, 1 =
On

0 Gate Bit: 1 = Start Aftl

DeclSus, 0 = Start Re-
lease

D405 54277 Envelope Generator 1: At-
tack I Decay Cycle
Control

7-4 Select Attack Cycle Dura-
tion: 0-15

3-0 Select Decay Cycle Dura-
tion: 0- 15

D406 54278 Envelope Generator 1:
Sustain I Release Cycle
Control

BASICTO MACHINELANGUAGE 325

HEX DECIMAL BITS DESCRIPTION

7-4 Select Sustain Cycle Du-
ration: 0-15

3-0 Select Release Cycle Du-
ration: 0- 15

D407 54279 Voice 2: Frequency
Control- Low-Byte

D408 54280 Voice 2: Frequency
Control-High-Byte

D409 54281 Voice 2: Pulse Waveform

Width-low-Byte
D40A 54282 7-4 Unused

3-0 Voice 2: Pulse Waveform

Width-High-Nybble
D40B 54283 Voice 2: Control Register

7 Select Random Noise
Waveform, 1 = On

6 Select Pulse Waveform,
1 = On

5 Select Sawtooth
Waveform, 1 = On

4 Select Triangle
Waveform, '1 = On

3 Test Bit: 1 = Disable Os-
cillator 2

2 Ring Modulate Osc. 2 with
Osc. 1 Output, 1 = On

1 Synchronize Osc. 2 with
Osc. 1 Frequency, 1 =
On

0 Gate Bit: 1 = Start Attl
Dec/Sus, 0 = Start Re-
lease

D40C 54284 Envelope Generator 2: At-
tack I Decay Cycle
Control

7-4 Select Attack Cycle Dura-
tion: 0- 15

326 BASIC TO MACHINE LANGUAGE

HEX DECIMAL BITS DESCRIPTION

3-0 Select Decay Cycle Dura-
tion: 0-15

D40D 54285 Envelope Generator 2:
Sustain / Release Cycle
Control

7-4 Select Sustain Cycle Du-
ration: 0- 15

3-0 Select Release Cycle Du-
ration: 0- 15

D40E 54286 Voice 3: Frequency
Control-low-Byte

D40F 54287. Voice 3: Frequency
Control-High-Byte.

D410 54288. Voice 3: Pulse Waveform

Width - low-Byte
D411 54289 7-4 Unused

3-0 Voice 3: Pulse Waveform
Width - High-Nybble

D412 54290 Voice 3: Control Register
7 Select Random Noise

Waveform, 1 = On
6 Select Pulse Waveform, 1

= On
5 Select Sawtooth

Waveform, 1 = On
4 Select Triangle Waveform,

1 = On
3 Test Bit: 1 = Disable Os-

cillator 3
2 Ring ModulateOsc. 3 with

Osc. 2 Output, 1 = On
1 Synchronize Ose. 3 with

Osc. 2 Frequency, 1 =
On

0 Gate Bit: 1 = Start Att/
DeclSus, 0 = Start Re-
lease

BASIC TO MACHINE LANGUAGE 327 .

HEX DECIMAL BITS DESCRIPTION

D413 54291 Envelope Generator 3: At-
tack / Decay Cycle
Control

7-4 Select Attack Cycle Dura-
tion: 0- 15

3-0 Select Decay Cycle Dura-
tion: 0-15

D414 54292 Envelope Generator 3:
Sustain / Release Cycle
Control

7-4 Select Sustain Cycle Du-
ration: 0-15

3-0 Select Release Cycle Du-
ration: 0-15

D415 54293 Filter Cutoff Frequency:
Low-Nybble (Bits 2-0)

D416 54294 Filter Cutoff Frequency:
High-Byte

D417 54295 Filter Resonance Control /

Voice Input Control
7-4 Select Filter Resonance:

0-15
3 Filter External Input: 1 =

Yes, 0 = No
2 Filter Voice 3 Output: 1 =

Yes, 0 = No
1 Filter Voice 2 Output: 1 =

Yes, 0 = No
0 Filter Voice 1 Output: 1 =

Yes, 0 = No
D418 54296 Select Filter Mode and

Volume
7 Cut-Off Voice3 Output: 1

= Off, 0 = On

6 Select Filter High-Pass
Mode: 1 = On

5 Select Filter Band-Pass
Mode: 1 = On

328 BASIC TO MACHINE LANGUAGE

HEX DECIMAL BITS DESCRIPTION

4 Select Filter low-Pass
Mode: 1 = On

3-0 Select Output Volume:
0-15

D419 54297 Analog/Digital Converter:
Game Paddle 1 (0-
255)

D41A 54298 Analog/Digital Converter:
Game Paddle 2 (0-
255)

D41B 54299 Oscillator 3 Random
Number Generator

D41C 54230 Envelope Generator 3
Output

D500-D7FF 54528-55295 SID IMAGES
D800-DBFF 55296-56319 Color RAM(Nybbles)
DCOO-DCFF 56320.-56575 MOS 6526 Complex

Interface Adapter (CIA)
#1

DCOO 56320 Data Port A (Keyboard,
Joystick, Paddles,
light-Pen)

7-0 Write Keyboard Column
Values for Keyboard
Scan

7-6 Read Paddles on Port A /
B (01 = Port A, 10 =
Port B)

4 Joystick A fire Button: 1 =
Fire

3-2 Paddle Fire Buttons
3-0 Joystick A Direction

(0- 15)
DCOl 56321 Data Port B (Keyboard,

Joystick, Paddles):
Game Port 1

BASIC TO MACHINE LANGUAGE 329

HEX DECIMAL BITS DESCRIPTION

7-0 Read Keyboard Row

Values for Keyboard

Scan
7 Timer B: Toggle/Pulse

Output
6 Timer A: Toggle/Pulse

Output
4 Joystick 1 Fire Button: 1 =

Fire

3-2 Paddle Fire Buttons

3-0 Joystick 1 Direction

DC02 56322 Data Direction

Register-Port A

(56320)
DC03 56323 Data Direction

Register-Port B

(56321)
DC04 56324 Timer A: Low-Byte
DC05 56325 Timer A: High-Byte
DC06 56326 Timer B: Low-Byte
DC07 56327

Timer B: High-Byte
DC08 56328 Time-of-Day Clock: 1/10

Seconds
DC09 56329 Time-of-Day Clock: Sec-

onds
DCOA 56330 Time-of-Day Clock: Min-

utes
DCOB 56331 Time-of-Day Clock: Hours

+ AM/PM Flag (Bit7)
DCOC 56332 Synchronous Serial I/O

Data Buffer
DCOD 56333

CIA Interrupt Control

Register (Read IRQs/

Write Mask)

7 IRQ Flag (1 = IRQ Oc-

curred) / Set-Clear Flag

4 FLAG1 IRQ (Cassette Read

/ Serial Bus SRQ Input)

330 BASIC TO MACHINE LANGUAGE

HEX DECIMAL BITS DESCRIPTION

3 Serial Port Interrupt
2 Time-of-Day Clock Alarm

Interrupt
1 Timer B Interrupt
0 Timer A Interrupt

DCOE 56334 CIA Control Register A
7 Time-of-Day Clock Fre-

quency: 1 = 50 Hz, 0
= 60 Hz

6 Serial Port I/O Mode: 1 =
Output, 0 = Input

5 Timer A Counts: 1 = CNT

Signals, 0 = System 02
Clock

4 Force Load Timer A: 1 =
Yes

3 Timer A Run Mode: 1 =
One-Shot, 0 = Con-
tinuous

2 Timer A Output Mode to
PB6: 1 = Toggle, 0 =
Pulse

1 Timer A Output on PB6: 1
= Yes, 0 = No

0 Start/Stop Timer A: 1 =
Start, 0 = Stop

DCOF 56335 CIA Control Register B
7 Set Alarm/TOD-Clock: 1 =

Alarm, 0 = Clock

BASIC TO MACHINE LANGUAGE 331

HEX DECIMAL BITS DESCRIPTION

6-5 Timer B Mode Select:

00 = Count System 02
Clock Pulses

01 = Count Positive

CNT Transitions

10 = Count Timer A
Underflow Pulses

11 = Count Timer A
Underflows While
CNT Positive

4-0 Same as CIA Control Reg.
A-for Timer B

DDOO-DDFF 56576-56831 MOS 6526 Complex Inter-
face Adapter (CIA) #2

DDOO 56576 Data Port A (Serial Bus,

RS-232, VIC Memory
Control)

7 Serial Bus Data Input
6 Serial Bus Clock Pulse

Input
5 Serial Bus Data Output
4 Serial Bus Clock Pulse

Output
3 Serial Bus ATN Signal

Output
2 RS-232 Data Output (User

Port)
1-0 VIC Chip System Memory

Bank Select (Default =
11)

DD01 56577 Data Port B (User Port,

RS-232)
7 User / RS-232 Data Set

Ready

332 BASIC TO MACHINE LANGUAGE

HEX DECIMAL BITS DESCRIPTION

6 User / RS-232 Clear to
Send

5 User
4 User / RS-232 Carrier De-

tect
3 User / RS-232 Ring Indi-

cator
2 User / RS-232 Data Termi-

nal Ready
1 User / RS-232 Request to

Send
0 User / RS-232 Received

Data
DD02 56578 Data Direction

Register-Port A
DD03 56579 Data Direction

Register-Port B
DD04 56580 Timer A: Low-Byte
DD05 56581 Timer A: High-Byte
0006 56582 Timer B: Low-Byte
DD07 56583 Timer B: High-Byte
D008 56584 Time-of-Day Clock: 1/10

Seconds
DD09 56585 Time-of-Day Clock: Sec-

onds

DDOA 56586 Time-of-Day Clock: Min-
utes

DOOB 56587 Time-of-Day Clock: Hours
+ AM!PM Flag (Bit 7)

DDOC 56588 Synchronous Serial I/O
Data Buffer

DDOD 56589 CIA Interrupt Control
Register (Read NMls/
Write Mask)

BASIC TO MACHINE LANGUAGE 333

HEX DECIMAL BITS DESCRIPTION

7 NMI Flag (1 = NMI Oc-
curred) / Set-Clear Flag

4 FLAG1 NMI (UserlRS-232
Received Data Input)

3 Serial Port Interrupt
1 Timer B Interrupt
0 Timer A Interrupt

DDOE 56590 CIA Control Register A
7 Time-of-Day Clock Fre-

.quency: 1 = 50 Hz, 0
= 60 Hz

6 Serial Port I/O Mode: 1 =
Output, 0 = Input

5 Timer A .Counts: 1 = CNT
Signals, 0 = System 02
Clock

4 Force Load Timer A: 1 =
Yes

3 Timer A Run Mode: 1 =
One-Shot, 0 = Con-
tinuous

2 Timer A Output .Mode to
PB6: 1 = Toggle, 0 =
Pulse

1 -TimerA Output on PB6: 1
= Yes, 0 = No

0 Start/Stop Timer A: 1 =
Start, 0 = Stop

DDOF 56591 CIA Control Register B
7 Set Alarm/TOD-Clock: 1 =

Alarm, 0 = Clock

-....

334 BASIC TO MACHINE LANGUAGE

..

HEX - DECIMAL BITS . DESCRIPTION

6-5 Tiiner B Mode Select:
00 = Count System02

Clock Pulses
01 = Count Positive

CNT Transitions
10 = Count Ti.merA

Underflow Pulses
11 = Count Timer A. Underflows While

CNT Positive

4-0 Same as CIA Control Reg.
A-for Timer B

. DEOO-DEFF 56832-57081 Reserved for Future I/O

Expansion
DFOO-DFFF 57088-57343 Reserved for Future I/O

Expansion

INTRODUCTION

Computers have three basic abilities: they can calculate, make deci-
sions, and communicate. Calculation is probably the easiest to program.
Most of the rules of mathematics are familiar to us. Decision making is
not too difficult, since the rules of logic are relatively few, even if you
don't know them too well yet.

Communication is the most complex, because it involves the least
exacting set of rules. This is not an oversight in the design of computers.
The rules allow enough flexibility to communicate virtually anything, and
in many possible ways. The only real rule is this: whatever sends infor-

mation must present the information so that it can be. understood by the
receiver.

OUTPUT TO THE TV

The simplest form of output in BASICis the. PRINT statement. PRINT
uses the TV screen as the output device, and your eyes are the input
device because they use the information on the screen.

When PRINTing on the screen, your main objective is to format the
information on the screen so it's easy to read. You should try to think like
a graphic artist, using colors, placement of letters, capital and lower
case letters, as well as graphics to best communicate the information.
Remember, no matter how smart your program, you want to be able to
understand what the results mean to you.

The PRINT statement uses certain character codes as "commands" to

the cursor. The I!III key doesn't actually display anything, it just

makes the cursor change position. Other commands change colors,
clear the screen, and insert or delete spaces. The .:~:IIIII:U_ key has a
character code number (CHR$) of 13. A complete table of these codes is
contained in Appendix C.

There are two functions in the BASIC language that work with the
PRINT statement. TABpositions the cursor on. the g.iven position from the
left edge of the screen, SPC moves the cursor right a given number of
spaces from the current position.

Punctuation marks in the PRINT statement serve to separate and for-
mat information. The semicolon (;) separates 2 items without any spaces
in between. If it is the last thing on a line, the cursor remains after the
last thing PRINTed instead of going down to the next line. It suppresses

336 INPUT/OUTPUTGUIDE

(replaces) the RETURN character that is normally PRINTed at the end of
the line.

The comma (,) separates items into columns. The Commodore 64 has

4 columns of 10 characters each on the screen. When the computer

PRINTs a comma, it moves the cursor right to the start of the next col-
umn. If it is past the last column of the line, it moves the cursor down to
the next line. Like the semicolon, if it is the last item on a line the

RETURN is suppressed.
The quote marks (" ") separate literal text from variables. The first

quote mark on the line starts the literal area, and the next quote mark

ends it. By the way, you don't have to have a final quote mark at the
end of the line.

The RETURN code (CHR$ code of 13) makes the cursor go to the next

logical line on the screen. This is not always the very next line. When

you type past the end of a line, that line is linked to the next line. The
computer knows that both lines are really one long line. The links are

held in the line link table (see the memory map for how this is set up).
A logical line can be 1 or 2 screen lines long, depending on what was

typed or pRINTed. The logical line the cursor is on determines where

the .:I:lIII:U. key sends it. The logical line at the top of the screen
determines if the screen scrolls 1 or 2 lines at a time.

There are other ways to use the TV as an output device. The chapter

on graphics describes the commands to create objects that move across
the screen. The VIC chip section tells how the screen and border colors

and sizes are changed. And the sound chapter tells how the TV speaker

creates ml1sic and special effects.

OUTPUT TO OTHER DEVICES

It is often necessary to send output to devices other than the screen,

like a cassette deck, printer, disk drive, or modem. The OPENstatement
in BASIC creates a "channel" to talk to one of these devices. Once the

channel is OPEN, the PRINT# statement will send characters to that
device.

EXAMPLEof OPEN and PRINT# Statements:

100 OPEN 4, 4: PRINT# 4, "WRITING ON PRINTER"
110 OPEN 3, 8, 3, "O:DISK-FILE,S,W": PRINT# 3, "SEND TO DISK"
120 OPEN I, 1, 1, "TAPE-FILE":PRINT# 1, "WRITE ON TAPE"
130 OPEN 2, 2, 0, CHR$(10): PRINT# 2, "SEND TO MODEM"

INPUT/OUTPUT GUIDE 337

The OPEN statement is somewhat. different for each device. The pa-
rameters in the OPEN statement are shown in the table below for each
device.

TABLEof OPEN Statement Parameters:

FORMAT:OPEN file#, device#, number, string

OUTPUT TO PRINTER

The printer is an output device similar to the screen. Your main con-

cern when sending output to the printer is to create a format that is easy
on the eyes. Your tools here include reversed, double-width, capital and
lower case letters, as well as dot-programmable graphics.

The SPC function works for the printer in the same way it works for the
screen. However, the TABfunction does not work correctly on the print-
er, because it calculates the current position on the line based on the
cursor's position on the screen, not on the paper.

The OPEN statement for the printer creates the channel for communi-
cation. It also specifies which character set will be used, either upper
case with graphics or upper and lower caSe.

EXAMPLESof OPEN Statement for Printer:

OPEN 1, 4: REM UPPER CASE/GRAPHICS
OPEN 1, 4, 7: REM UPPER AND LOWER CASE

338 INPUT/OUTPUT GUIDE

DEVICE DEVICE# NUMBER STRING

CASSETTE 1 o = Input File Name

1 = Output
2 = Output with

EOT
MODEM 2 0 Control Registers

SCREEN 3 0,1
PRINTER 4 or 5 o = Upper/Graphics Text Is PRINTed

7 = Upper/lower Case
DISK 8 to 11 2- 14 = Data Channel Drive #, File Name,

File Type, Read/Write
15 = Command Command

Channel

When working with one character set, individual lines can be PRINTed

in the opposite character set. When in upper case with graphics, the

cursor down character (CHR$(17» switches the characters to the upper
and lower case set. When in upper and lower case, the cursor up char-
acter (CHR$(l45» allows upper case and graphics characters to be
PRINTed.

Other special functions in the printer are controlled through character
codes. All these codes are simply PRINTed just like any other character.

TABLEof Printer Control Character Codes:

See your Commodore printer's manual for details on using the com-
mand codes.

OUTPUT TO MODEM

The modem is a simple device that can translate character codes into

audio pulses and vice-versa, so that computers can communicate over
telephone lines. The OPEN statement for the modem sets up the pa-
rameters to match the speed and format of the other computer you are
communicating with. Two characters can be sent in the string at the end
of the OPEN statement.

The bit positions of the first character code determine the baud rate,
number of data bits, and number of stop bits. The second code is op-
tional, and its bits specify the parity and duplex of the transmission. See

the RS-232 section or your VICMODEM manual for specific details on this
device.

INPUT/OUTPUT GUIDE 339

CHR$ CODE PURPOSE

10 Line feed
13 RETURN (automatic line feed on CBM printers)
14 Begin double-width character mode
15 End double-width character mode
18 Begin reverse character mode
146 End reverse character mode
17 Switch to upper/lower case character set
145 Switch to upper case/graphics character set
16 Tab to position in next 2 characters
27 Move to specified dot position
8 Begin dot-programmable graphic mode
26 Repeat graphics data

EXAMPLEof OPEN Statement for Modem:

OPEN 1, 2, 0, CHR$(6): REM 300 BAUD
100 OPEN 2, 2, 0, CHR$(163) CHR$(112): REM 110 BAUD, ETC.

Most computers use the American Standard Code for Information In-
terchange, known as ASCII (pronounced ASK-KEY).This standard set of
character codes is somewhat different from the codes used in the Com-

modore 64. When communicating with other computers, the Commo-
dore character codes must be translated into their ASCII counterparts. A
table of standard ASCII codes is included in this book in Appendix C.

Output to the modem is a fairly uncomplicated task, aside from the
need for character translation. However, you must know the receiving
device fairly well, especially when writing programs where your
computer "talks" to another computer without human intervention. An
example of this would be a terminal program that automatically types in
your account number and secret password. To do this successfully, you
must carefully count the number of characters and RETURNcharacters.
Otherwise, the computer receiving the characters won't know what to do
with them.

WORKING WITH CASSEnE TAPE

Cassette tapes have an almost unlimited capacity for data. The
longer the tape, the more information it can store. However, tapes are
limited in time. The more data on the tape, the longer the time 'it takes
to find the information.

The programmer must try to minimize the time factor when working
with tape storage. One common practice is to read the entire cassette
data file into RAM, then process it, and then re-write all the data on the
tape. This allows you to sort, edit, and examine your data. However,
this limits the size of your files to the amount of available RAM.

If your data file is larger than the available RAM, it is probably time
to switch to using the floppy disk. The disk can read data at any position
on the disk, without needing to read through all the other data. You can
write data over old data without disturbing the rest of the file. That's
why the disk is used for all business applications like ledgers and mail-
ing lists.

The PRINT# statement formats data just like the PRINT statement
does. All punctuation works the same. But remember, you're not work-
ing with the screen now. The formatting must be done with the INPUT#
statement constantly in mind.

340 INPUT/OUTPUT GUIDE

Consider the statement PRINT# '1, A$, B$, C$. When used with the
screen, the commas between the variables provide enough blank space
between 'items to format them into columns ten characters wide. On

cassette, anywhere from 1 to TO spaces will be :added, depending on
the length of the strings. This wastes space on your tape.

Even worse is what happens when the lNPUT# statement tries to read
these strings. The statement INPUT# I, A$,B$, C$ will discover no data
for B$ and C$. A$ will contain all three variables, .plus the spaces be-
tween them. What happens? Here's a look at the tape file:

A$="DOG" B$="CAT" C$="TREE"
PRINT#I, A$, B$, C$.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
DOG CAT T R E E RETURN

The INPUT# statement works like the regular INPUTstatemel'lt. When

typing data into the INPUT statement, the. data items are separated,
.either by hitting,the .:I:aIIl:I~. key or using commas to separate them.
The PRINT# statemel'lt puts a RETURN.at the end of a line just like the
,PRINT statement. A$ fills up with all three values because there's no
separ.ator on the tape between them, only after all three.

A proper separator wouLd be a comma (,) or a RETURNon the tape.
The RETURNcode .is automatically put at the end .of a PRINT or PRINT #
statement. One way to put the RETURNcode between each item is to
use only one item per P.RINT# statement. A better way is to :set a. vari-
able to the RETURNCHR$ code, which is CHR$(13), or use a comma.
The statement for this is :R$= "," : PRINT# 1, -A$R$ B$ R$ C$. Don't use
commas or any other punctuation between the variable names, since
the Commodore 64 can .tell them apart and they'll' only use up space in
your program.

A proper tape file looks like this:

1 2 3 4 '5 67'S 9 10 11 1213

.DOG, CAT, T R.E E RETURN

The GET# statement will pick data from the tape one character at a
time. It will receive each character, including the RETURN code and

other punctuation. The CHR$(O) code .is received as an empty string, not

as a one character string with .a code .of O. If you try to use the ASC

function on an empty str.ing, you get the error message -ILLEGAL
QUANTITY ERROR.

INPUT/OUTPUTGUIDE 341

The line GET# 1, A$: A= ASC(A$) is commonly used in programs to
examine tape data. To avoid error messages, the line should be mod-
ified to GET#l, A$: A= ASC(A$+ CHR$(O». The CHR$(O) at the end
acts as insurance against empty strings, but doesn't affect the ASC
function when there -are other characters in A$.

DATA STORAGE ON FLOPPYDISKEnES

Diskettes allow 3 different forms of data storage. Sequential files are
similar to those on- tape, but several can can be used at the same time.
Relative files let you organize the data into records, and then read and
replace individual records within the file. Random files let you work with
data anywhere on the disk. They are organized into 256 byte sections
called blocks.

The PRINT# statement's limitations are discussed. in .the section on

cassette tape. The same limitations to format apply on the disk.
RETURNsor commas are needed to separate your data. The CHR$(Q)is
still read by the GET# statement as an empty string.

Relative and random files both make use of separate data and com-
mand "channels." Data written to the disk goes through the data chan-
nel, where it is stored in a temporary buffer in the disk's RAM. When the
record or block is complete, a command is sent through the command
channel that tells the drive where to put the data, and the entire buffer
is written.

Applications that require large amounts of data to be processed are
best stored in relative disk files. These will use the least amount of time
and provide the best flexibility for the programmer. Your disk drive
manual gives a complete programming guide to use of disk files.

342 INPUT/OUTPUTGUIDE

THE GAME PORTS

The Commodore 64 has two 9-pin Game Ports which allow the use of
joysticks, paddles, or a light pen. Each port will accept either one joy-
stick or one paddle pair. A light pen can be plugged into Port A (only) for
special graphic control, etc. This section gives you examples of how to use

the joysticks and paddles from both BASIC and machine language.
The digital joystick is connected to CIA #1 (MOS 6526 Complex Inter-

face Adapter). This input/output device also handles the paddle fire but-
tons and keyboard scanning. The 6526 CIA chip has 16 registers which
are in memory locations 56320 through 56335 inclusive ($DCOO to
$DCOF). Port A data appears at location 56320 (DCOO)and Port B data
is found at location 56321 ($DCOl).

A digital joystick has five distinct switches, four of the switches are
used for direction and one of the switches is used for the fire button. The

joystick switches are arranged. as shown:

(Top)
FIRE

(Switch 4)
UP

(Switch 0)
o

o

,
- ~ ----- RIGHT

(Switch 3)

LEFT

(Switch 2)

DOWN
(Switch 1)

These switches correspond to the lower-'5 bits of the data in location
56320 or 56321. Normally the bit is set to a one if a direction is NOT
chosen or the fire button is NOT pressed. When the fire button is

INPUT/OUTPUTGUIDE 343

pressed, the bit (bit 4 in this case) changes to a O. To read the joystick
from BASIC, the following subroutine should be used:

10 FORK=IZIT011Z1:REMSET UP DIRECTION STRING
2121READDR$(K):NEXT
3121.DATA"1IJ IIt.~"1 tiS".. till.. IIJ..J".."N~J"
4121DATA"SW","","E","NE","SE"
50 PRINT"CiOHIG...";
6121GOSUB101Zl:REM READ THE JOYSTICK
65 IFDR$(J)=""THE~181Z1: REM CHECK IF A DIRECTION ~jAS
CHOSEt.1
7121PRINTDR$(J'v').;" ".; :.REM OUTPUT WHICH DIRECTION
8121 I FFR= 16THEN61Z1: REM CHECK IFF I RE BUTTml ~jAS
PUSHED
9121PRnn" F I R E ! ! !" :GOTOGIZI
100 J'v'=PEEK(56321Z1): f':EM GET JOYSTICK VALUE
11121FR=JVAND16:REM FORM FIRE BUTTON STATUS
120 JV=15-(J'v'AND15):REM FORM DIRECTION VALUE
1:30 RETURN

NOTE: For the second joystick, set JV = PEEK(56321).

The values for JV correspond to these directions:

344 INPUT/OUTPUT GUIDE

JV EQUAL TO DIRECTION

0 NONE
1 UP
2 DOWN
3 -

4 LEFT
5 UP & LEFT
6 DOWN & LEFT
7 -
8 RIGHT
9 UP & RIGHT

10 DOWN & RIGHT

A small machine code routine which accomplishes the same task is as
follows:

1000 .PAGE (JO~STICK.8/5) JO~STICK - BUTTON READ
ROUT I t.jE

1010
1020 ;AUTHOR - BILL HINDORFF
1030 .;
1040 D:":=$C 11121
1050 D'r"=$C 111
1 (16121 *=$C2(I(1

1070 DJPR LDA SDC00 ; (GET INPUTFROM PORT
A m.jL'r')

1080 DJRRB LDY #0 JTHIS ROUTINEREADS AND
DECODES THE
1090 LDX #0 JJOYSTICK/FIREBUTTON
I~jPUT DATA I~I

1100 LSR A ;THE ACCUMULATOR. THIS
LEAST SIGNIFICANT
1110 BCS DJR0 J5 BITS CONTAIN THE
sm TCH CLO~:;UF.:E

1120 DEY JINFORMATION.IF A SWITCH
IS CLOSED THEN IT
1130 DJR0 LSR A JPRODUCES A ZERO BIT. IF
A SWITCH IS OPEN THEN
1140 BCS DJRl ;IT PRODUCESA ONE BIT.
THE JOYSTICK DIR-
1150 I t~'r' .;ECTI at.jS ARE RIGHT.,LEFT.,
FORWARD, BACKWARD
1160 DJR1 LSR A ;BIT3=RIGHT, BIT2=LEFT,
I~ I T 1 =BACK~,jARD.,

1170 BCS DJR2 ;EIT0=FORWARD AND
BIT4-FIRE BUTTON.
1180 DEX ;AT PTS TIME DX AND DY
CONTAIN 2'S COMPLIMENT
1190 DJR2 LSP A ;DIRECTION ~JMBERS I.E.
$FF=-l, $00=O, $01=1.
1200 BCS DJR3 ;DX=l (MOVE RIGHT), DX=-l
(r10'.,.'E LEFT).,

1211<:1 I t'.I:": .: D>':=121 0:HO :": CHA~H3E).
DY=-l (MOVE UP SCREEH),
1220 DJR3 LSF.: fi .;D'r'= 1 (r10VE DO~Jt.j SCF.:EEt.j).,
DY-0 (NO Y CHAHGE).
1230 STX DX ;THE FORWARDJOYSTICK
POSITION CORRESPOHDS
1240 STY DY ;TO MOVE UP THE SCREEH
AHD THE BACKWARD
1250 RTS JPOSITIONTO MOVE DOWN
~3CF.:Ea..j .
1~:60 .;

1270 JAT RTS TIME THE CARRY FLAG COHTAIHS THE FIRE
BUTTOH :::TATE.
1280 ;IF C=l THEH BUTTOH NOT PRESSED. IF C=0 THEN
PF.:ES::;ED.

129121..
130121 .Et.m

INPUT/OUTPUTGUIDE 345

PADDLES

A paddle is connected to both CIA #1 and the SID chip (MOS 6581
Sound Interface Device) through a game port. The paddle value is read
via the SID registers 54297 ($D419) and 54298 ($D41A). PADDLESARE
NOT RELIABLEWHEN READFROM BASIC ALONE!!!!The best way to use
paddles, from BASIC or machine code, is to use the following machine
language routine. . . . (SYSto it from BASICthen PEEK the memory
locations used by the subroutine).

10100
j*-****-*-*-**
11010 ;t FOUR PADDLE READ ROUTINE (CAN ALSO BE USED
FOR TWO)
11020
.; t,+:tt**,+::+::+:***:+:**;+:*:H:+:**;t.*:"",+::t.:+:*,+:**~€,+::n,I€:+::+::+::+:**:+::+:,+:t:+:;+;:+:,+;,+::+::t.,+:

11030 ;AUTHOR - BILL HINDORFF
104121 PORTA=$DC00
105121 CIDDRA=$DCI02
1106121 SID=$D401O
1070 *=$C100
1080 BUFFER *-=t+l
109(1 PDLX *=:;:+2
11100 PDL'T' *=;+;+2
11110 BTNA :t.=*+1
11210 BTt.jB *-=*+1
11310 ,+:=$CIOIOI2I
114121 PDLRD
115121 LD:x: #1
OR TWO ANALOG JOYSTICKS
1160 PDLRD0
ONE PAIR (CONDITION X 1ST)
117121 SEI
1180 LDA CIDDRA
OF DDR
1190
120121
1210
WPUT
12210 LDA #$8121
1 :23121 PDLRD 1

1240 STA PORTA
PADDLES
125(1
126(1
127121
1280
1290
1:31010
1310
1:320
133121

;FOR FOUR PADDLES

;ENTRY POINT FOR

;GET CURRENT VALUE

STA BUFFER
LDA #$Ce
STA C I DDF.:Ft

.; SAVE IT AWA'T'

.; SET PO~~T A FOR

;ADDRESS A PAIR OF

#:$810 ,; ~JA IT A ~,JHI LELD'T'
PDLRD2

Nap
DE'T'

BPL
LDA
STA
LDA
STA

PDLRD2
SID+25
PDL>O:..>o:

SID+26
PDL'T'.,X

.: GET >0: VALUE

,;GET 'T' 'v'ALUE

346 INPUT/OUTPUT GUIDE

1340 LDA PORTA
PFIDIILE FIPE BUTTOt.E;:
1350 ORA #$80
Fr::: OTHEF.: PFi! F.:
1360 STA BTNA
BIT:;:: I::;: PDL 'T'

1370 LDA 1$40
1:~:80 DE)<:

1390 BPL PDLRDI
1400 LDA BUFFER
1410 STA CIDDRA
\II"ILUE OF DDR
1420 LDA PORTA+l
1430 STA BTNB
:F.:IT 3 IS PDL 'T'
144121 ClI
1450 RTS
146121 . Et.m

.:T I t'1E TO READ

;t'1AKE I T THE :3FIt-1E

.:ALL pn I R::;:nONE?

.:NO

;RESTORE PREVIOUS

.:FOF: 2ND PA I R

.:BIT 2 IS PDL :"':.

The paddles can be read by using the following BASIC program:

10 C=12*4096:REM SET PADDLE ROUTINE START
11 REM POKE IN THE PADDLE READING ROUTINE
15 FORI=0T063:READA:POKEC+I,A:NEXT
20 SYSC:REM CALL THE PADDLE ROUTINE
3121 PI =-PEEK(C+257) :REt1SET PADDLE Ot-JE VALUE
40 P;;;:=PEEK(C+258): F.:Et1" " nom
5121P3""PEEK (C+259) : REM" " THREE
60 P4=PEEK(C+260): REt1" " FOUl":
61 REM READ FIRE BUTTON STATUS
52 SI=PEEK(C+261):S2=PEEK(C+262)
70 PRINTP1,P2,P:;::.P4:REM PRINT PADDLE VALUES
7:;;:: F:Et1 PR I t.JT F I F.:E BUTTOt~ STATUS
75 PF:HH: PF.:IHT"FIF.:E FI ".: SI.< "FIRE B ".: S2
80 FORW=IT050:NEXT:REM WAIT A WHILE

~amm
9121 PRIt-n":':]": PI':I ~n : GOTO 20:F.:EMCLEAR SCREEt.J m.m DO
AGAIt..1
95 REM DATA FOR MACHINE CODE ROUTINE
100 DATAI52,1,120,173,2,220,141,0,193.169,192,141.
2.. ;;-~2el.. 169

25.. 21:;~..157

120 DATAl,193.173,26,212,157,3,193,173,O.220.9,128,
141.- 5..193

130 DAT8169.64,202,16,222,173,0.193,141,2.220,173.
1..22121. I'll

140 DATA6.193,88,96

INPUT/OUTPUT GUIDE 347

LIGHT PEN

The light pen input latches the current screen position into a pair of
registers (LPX, LPY)on a low-going edge. The X position register 19
($13) will contain the 8 MSBof the X position at the time of transition.
Since the X position is defined by a 512-state counter (9 bits), resolution
to 2 horizontal dots is provided. Similar/y, the Y position is latched in its
register 20 ($14), but here 8 bits provide single raster resolution within

the visible display. The light pen latch may be triggered only once per
frame, and subsequent triggers within the same frame will have no

effect. Therefore, you must take several samples before turning the pen
to the screen (3 or more samples average), depending upon the char-
acteristics of your light pen.

RS-232 INTERFACE DESCRIPTION

GENERAL OUTLINE

The Commodore 64 has a built-in RS-232 interface for connection to
any RS-232 modem, printer, or other device. To connect a device to the

Commodore 64, all you need is a cable and a little bit of programming.
RS-232 on the Commodore 64 is set-up in the standard RS-232 for-

mat, but the voltages are TTL levels (0 to 5V) rather than the normal

RS-232 -12 to 12 volt range. T/1e cable between the Commodore 64
and the RS-232 device should take care of the necessary voltage con-
versions. The Commodore RS-232 interface cartridge handles this prop-
er/y.

The RS-232 interface software can be accessed from BASIC or from

the KERNALfor machine language programming.
RS-232 on the BASIC level uses the normal BASIC commands: OPEN,

CLOSE, CMD, INPUT#, GET#, PRINT#, and the reserved variable ST.
INPUT# and GET# fetch data from the receiving buffer, while PRINT#
and CMD place data into the transmitting buffer. The use of these com-
mands (and examples) will be described in more detail later in this
chapter.

The RS-232 KERNALbyte and bit level handlers run under the control

of the 6526 CIA #2 device timers and interrupts. The 6526 chip gener-

348 INPUT/OUTPUT GUIDE

ates NMI (Non-Maskab/e Interrupt) requests for RS-232 processing. This
allows background RS-232 processing to take place during BASIC and
machine language programs. There are built-in hold-offs in the KERNAl,
cassette, and serial bus routines to prevent the disruption of data stor-
age or transmission by the NMls that are generated by the RS-232
routines. During cassette or serial bus activities, data can NOT be re-
ceived from RS-232 devices. But because these hold-offs are only local
(assuming you're careful about your programming) no interference
should result.

There are two buffers in the Commodore 64 RS-232 interface to help.
prevent the loss of data when transmitting or receiving RS-232 informa-
tion.

The Commodore 64 RS-232 KERNALbuffers consist of two first-in/
first-out (FIFO) buffers, each 256 bytes long, at the top of memory. The
OPENing of an RS-232 channel automatically allocates 512 bytes of
memory fOTthese buffers. If there is not enough free space beyond the
end of your BASIC program no error message will be printed, and the
end of your program will be destroyed. SO BE CAREFUL!

These buffers are automatically removed by using the CLOSE com-
mand.

OPENING AN RS-232 CHANNEL

Only one RS-232 channel should be open at any time; a second OPEN
statement will cause the b.uffer pointers to be reset. Any characters in
either the transmit buffer or the receive buffer will be lost.

Up to 4 characters can be sent in the filename field. The first two are
the control and command register characters; the other two are re-
served for future system options. Baud rgte, parity, and other options
can be selected through this feature.

No error-checking is done on the control word to detect a non-
implemented baud rate. Any illegal control word will cause the system
output to operate at a very slow rate (below 50 baud).

BASIC SYNTAX:

OPEN Ifn,2,O,"<control register><command register><opt baud
low><opt baud high>"

Ifn- The logical file number (Ifn) then can be any number from 1
through 255. But be aware of the fact that if you choose a logical file
number that is greater than 127, then a line feed will follow all carriage
returns.

INPUT/OUTPUT GUIDE 349

STOP BITS

0-1 STOP BIT
1-2 STOP BITS

WORD LENGTH

UNUSED

4

Figure 6-1. Control Register Map.

<control register> -Is a single byte character (see Figure 6-1, Con-
trol Register Map) required to specify the baud rates. If the lower 4 bits
of the baud rate is equal to zero (0), the <opt baud low><opt baud

high> characters give you a rate based on the following:
<opt baud low> = <system frequency/rate/2-1 00- <opt baud

high>*256

<opt baud high> = INT«system frequency/rate/2- 100)/256

350 INPUT/OUTPUT GUIDE

BIT DATA
6 5 WORD LENGTH

0 0 8 BITS

0 1 7 BITS

1 0 6 BITS

1 1 5 BITS

3 2
1@)

BAUD RATE

0 0 0 0 USER RATE [NI]

0 0 0 1 50 BAUD

0 0 1 0 75

0 0 1 1 110

0 1 0 0 134.5

0 1 0 1 150

0 1 1 0 300

0 1 1 1 600

1 0 0 0 1200

1 0 0 1 (1800) 2400

1 0 1 0 2400

1 0 1 1 3600 [NI]

1 1 0 0 4800 [NI]

1 1 0 1 7200 [NI)

1 1 1 0 9600 [NI]

1 1 1 1 19200 [NI]

HANDSHAKE

0-3 LINE
1-X LINEPAR

GEN
OD
REC
EVE
REC
MA
PAR
SPA
PAR

DUPLEX

O-FUL

1-HAL

UNUSED

Figure 6-2. Command Register Map.

The formulas above are based on the fact that:

system frequency = 1.02273E6 NTSC (North American TV stan-
dard)

= O.98525E6 PAL(U.K. and most European TV
standard)

<command register>-Is a single byte character (see Figure 6-2,
Command Register Map) that defines other terminal parameters. This
character is NOT required.

INPUT/OUTPUTGUIDE 351

PARITY
BIT BIT BIT
7 6 5

0

o 1
-

tt111

OPTIONS

OPERATIONS

::UTYDISABLED, NONE
NERATED/RECEIVED

I PARITY
EIVER/TRANSMITTER
N PARITY
EIVER/TRANSMITTER
IK TRANSMITTED
ITY CH ECK DISABLED
CE TRANSMITTED
fTY CHECK DISABLED

KERNAL ENTRY:

OPEN ($FFCO) (See KERNAl specifications. for more information on
entry conditions and instructions.)

IMPORTANT NOTE: In a BASIC program, the RS-232 OPEN command should be per-
formed before creating any variables or arrays because an automatic CLR is per-
formed when an R5-232 channel is OPENed (This is due to the allocation of 512 bytes

at the top of memory.) Also remember that your program will be destroyed if 512

bytes of space are not available at the time of the OPEN statement.

GEnlNG DATA FROM AN RS-232 CHANNEL

When getting data from an RS-232 channel, the Commodore 64 re-
ceiver buffer will hold up to 255 characters before the buffer overAows.
This is indicated in the RS-232 status word (ST in BASIC, or RSSTATin

machine language). If an overAow occurs, then all characters received
during a full buffer condition, from that point on, are lost. Obviously, it
pays to keep the buffer as clear .as possible.

If you wish to receive RS-232 data at. high speeds (BASIC can only go
so fast, especially considering garbage collects. This can cause the re-
ceiver buffer to overAow), you will have to use .machine language
routines to handle this type of data burst.

BASIC SYNTAX:

Recommended: GET#lfn, <string variable>
NOT Recommended: INPUT#lfn ,<variable list>

KERNAL ENTRIES:

CHKIN ($FFC6)-See Memory Map for more information on entry and
exit conditions.

GETIN ($FFE4)-See Memory Map for'more information on entry and
exit conditions.

CHRIN ($FFCF)-See Memory Map for more information on entry and
exit conditions.

352 INPUT/OUTPUT GUIDE

NOTES:

If the word length is less than 8 bits, all unused bit(s) will be assigned a value of
zero.

If a GET# does not find any data in the buffer, the character nn (a null) is returned.

If INPUT# is used, then the system will hang in a waiting condition until a non-null

character and a following carriage return is received. Therefore, if the Clear To Send
(CTS) or DataSsette Ready (DSR) line(s) disappear during character INPUT#, the sys-
tem will hang in a RESTORE-only state. This is why the INPUT# and CHRIN routines
are NOT recommended.

The routine CHKIN handles the x-line handshake which follows the EIA standard

(August 1979) for RS-232-C interfaces. (The Request To Send (RTS), CTS, and Re-
ceived line signal (DCD) lines are implemented with the Commodore 64 computer
defined as" the Data Terminal device.)

SENDING DATA TO AN RS-232 CHANNEL

When sending data, the output buffer can hold 255 characters before
a full buffer hold-off occurs. The system will wait in the CHROUT routine
until transmission is allowed or the .:lIIlr~'tIlI:.l and .:1:1..1(81:1:11keys
are used to recover the system through a WARM START.

BASIC SYNTAX:

CMD Ifn-acts same as in the BASIC specifications.
PRINT#lfn, <variable list>

KERNAL ENTRIES:

CHKOUT ($FFC9)-See Memory Map for more information on entry
and exit conditions.

CHROUT ($FFD2)-See Memory Map for more information on entry
conditions.

INPUT/OUTPUT GUIDE 353

IMPORTANT NOTES: There is no carriage-return delay built into the output channel.

This means that a normal RS-232 printer cannot correctly print, unless some form of

hold-off (asking the Commodore 64 to wait) or internal buffering is implemented by
the printer. The hold-off can easily be implemented in your program. If a CTS (x-line)
handshake is implemented, the Commodore 64 buffer will fill, and then hold-off more

output until transmission is allowed by the RS-232 device. X-line handshaking is a
handshake routine that uses multi-lines for receiving and transmitting data.

The routine CHKOUT handles the x-line handshake, which follows the EIA standard

(August 1979) for RS-232-C interfaces. The RTS, CTS, and DCD lines are implemented
with the Commodore 64 defined as the Data Terminal Device.

CLOSING AN RS-232 DATACHANNEL

Closing an RS-232 file discards all data in the buffers at the time of
execution (whether or not it had been transmitted or printed out), stops
all RS-232 transmitting and receiving, sets the RTS and transmitted data
(Sout) lines high, and removes both RS-232 buffers.

BASIC SYNTAX:

CLOSE Ifn

KERNAL ENTRY:

CLOSE ($FFC3)-See Memory Map for more information on entry and
exit conditions.

NOTE: Care should be taken to ensure all data is transmilled before closing the
channel. A way to check this from BASIC is:

100 55=5T: IF(55=0 OR 55=8) THEN 100
110 CLOSE Ifn

354 INPUT/OUTPUT GUIDE

Table 6-1. User-Port lines

[7] [6] [5] [4] [3] [2] [1] [0] (Machine Lang.-RSSTAT
:_PARITY ERROR BIT

:_FRAMING ERROR BIT
RECEIVER BUFFER OVERRUN BIT

RECEIVER BUFFER-EMPTY

(USE TO TEST AFTER A GET#)
CTS SIGNAL MISSING BIT

UNUSED BIT

DSR SIGNAL MISSING BIT

BREAK DETECTEDBIT

Figure 6-3. RS-232 Status Register.

INPUT/OUTPUT GUIDE 355

(6526 DEVICE #2 Loc. $DDOO-$DDOF)

PIN 6526
DESCRIPTION

IN/
ID ID

EIA ABV MODES
OUT

C PBO RECEIVED DATA (BB) Sin IN 1 2
D PB1 REQUEST TO SEND (CA) RTS OUT 1*2
E PB2 DATA TERMINAL READY (CD) DTR OUT 1*2
F PB3 RING INDICATOR (CE) RI IN 3
H PB4 RECEIVED LINE SIGNAL (CF) DCD IN 2
J PB5 UNASSIGNED () XXX IN 3
K PB6 CLEAR TO SEND (CB) CTS IN 2
L PB7 DATA SET READY (CC) DSR IN 2

B FLAG2 RECEIVED DATA (BB) Sin IN 1 2
M PA2 TRANSMITTED DATA (BA) Sout OUT 1 2

A GND PROTECTIVE GROUND (AA) GND 1 2
N GND SIGNAL GROUND (AB) GND 123

MODES:

1) 3-LlNE INTERFACE (Sin,Sout,GND)
2) X-LINE INTERFACE

3) USER AVAILABLE ONLY (Unused/un implemented in code.)
* These lines are held high during 3-LlNE mode.

NOTES:

If the BIT=O, then no error has been detected.

The RS-232 status register can be read from BASIC using the variable ST.
If ST is read by BASIC or by using the KERNAl READST routine the RS-232 status

word is cleared when you exit. If multiple uses of the STATUSword are necessary the

ST should be assigned to another variable. For example:

SR=ST: REM ASSIGNS ST TO SR

The RS-232 status is read (and cleared) only when the RS-232 channel was the last
external I/O used.

SAMPLE BASIC PROGRAMS

10 REM THIS PROGRAM SENDS AND RECEIVES DATA
TO/FROM A SILENT 700
11 REM TERMINAL MODIFIED FOR PET ASCII
20 REM TI SILENT 700 SET-UP: 300 BAUD, 7-BIT ASCII,
MARK PAR IPr',

21 REM FULL DUPLEX
30 REt1 SAt1E SET-UP AT COMPUTER US ING 3-L HIE
INTERFACE
100 OPEN 2.2,3.CHR$(6+32)+CHR$(32+128):REM OPEN
THE CHANNEL
110 GET#2,A$:REM TURN ON THE RECEIVER CHANNEL
(TOSS A NULl)
200 REM MAIN LOOP
210 GET B$:REM GET FROM COMPUTER KEYBOARD
220 IF B$O"" THEN PR INT#2, B$.;:REt1 IF A KE'T'
PRESSED. SEND TO TERMINAL
230 GET#2,C$:REM GET A KEY FROM THE TERMINAL
240 PRINT B$;C$; :REM PRINT ALL INPUTS TO COMPUTER
SCREEN
250 SR=ST: IF SR=0 OR SR=8 THEN 200:REM CHECK
STATUS. IF GOOD THEN CONTINUE
300 REM ERROR REPORTING
318 PRINT "ERROR: ";
320 IF SR AND 1 THEt.~PRINT "PARITY"
330 IF SR At.m 2 THEt~ PRUIT "FRAt1E"
340 IF SR AND 4 THEN PRINT "RECEIVER BUFFER FULL"
350 IF SR AND 128 THEN PRINT "BREAK"
360 IF <PEEK(673) AND 1) THEN 360:REM WAIT UNTIL
ALL CHARS, TRANSMITTED
370 CLOSE 2: END

356 INPUT/OUTPUTGUIDE

113 REr1 THIS PROGRAI'1SENDS AND RECEIVES TRUE.ASCI I
DATA
11313 OPEN 5,2.3.CHR$(6)
lie DIM F%(255),T%C255)
21313 FOR J=32 TO 64~T%CJ)=J:N~n:
2113 T%(13)=13:T%C2e)=8:RV=18:CT=0
22121 FOR J=65 TO 9121:K=J+32:T%CJ)=K:NEXT
23121FOR J=91 TO 95: T%(J)=.J: NEXT
2413 FOR J=193 TO 218:K=J~128:T%(J)=K:NEXT
2513 T%(146)=16:T%(133)=16
26121FOR J=13 TO 255

27121 K=Tr:O)
28121IF K()0THEN F%CK)=J:F%CK+128)=J
29121 NEXT

313121PRItH " "CHR.(147)
31121 GET#5.A$
32121 IFA'=""OR 8TOI2I THEN 3613
3313 PRINT " "CHR$(l57).: CHR.CF;':CASCCAS»);
3413 IF F%(ASC(A$))=34 THEN POKE212,13
350 GOTO 310
360 PRnHCHRS (RV)" "CHR$(157) .:CHR$(146); :GET AS
37121 IF A$O""THENPRItH#5, CHR'(T;-;CASC(A$»)).;
38121 CT=C.T+l
390 IF CT=8 THENCT=13:RV=164-RV
4113 00T03113

RECEIVER/TRANSMITTER BUFFER BASE LOCATION
POINTERS

$OOF7-RIBUF-A two-byte pointer to the Receiver Buffer base loca-
tion.

$OOF9-ROBUF-A two-byte pointer to the Transmitter Buffer base
location.

The two locations above are set up by the OPENKERNAL routine, each
pointing. to a different 256-byte buffer. They are de-allocated by writing
a zero into the high order bytes ($OOF8and $OOFA),which is done by the
CLOSEKERNALentry. They may also be allocated/de-allocated by the
machine language programmer for his/her own purposes, removing/
creating only the buffer(s) required. When using a machine language
program that allocates. these buffers, care must be taken to make sure
that the top of memory pointers stay correct, especially if BASIC pro-
grams are expec:ted to run at the same time.

INPUT/OUTPUTGUIDE 357

ZERO-PAGE MEMORY LOCATIONS AND USAGE FOR
RS-232 SYSTEMINTERFACE

$00A7-INBIT-Receiver input bit temp storage.
$OOA8-BITCI-Receiver bit count in.
$00A9-RINONE-Receiver flag Start bit check.
$OOAA-RIDATA-Receiver byte buffer/assembly location.
$OOAB-RIPRTY:""-Receiver parity bit storage.
$00B4-BITIS- Transmitter bit count out.
$OOBS:"NXTBIT- Transmitter next bit to be sent.

.$00B6-RODATA- Transmitter byte buffer/disassembly location.

All the above zero-page locations are used locally and are only given
as a guide to understand the associated routines. These cannot be used
directly by the BASIC or KERNAl level programmer to do RS-232 type
things. The system RS-232 routines must be used.

NONZERO-PAGE MEMORY LOCATIONS AND USAGE FOR
RS-232 SYSTEM INTERFACE

General RS-232 storage:

$0293-MS1CTR-Pseudo 6551 control register (see Figure 6-1).
$0294-M51COR-Pseudo 6551 command register (see Figure 6-2).
$02.95-M51 AJB- Two bytes following the control and command

registers in the file name field. These locations contain the
baud' rate for the start of the bit test during the interface
activity, which, in turn, is used to calculate baud rate.

$0297 -RSSTAT- The RS-232 status register (see. Figure 6-3).
$0298-BITNUM- The number of bits to be sent/received.
$0299-BAUDOF- Two bytes that are equal to the time of one bit

cell. (Based on system clock/baud rate.)

358 INPUT/OUTPUTGUIDE

$029B-RIDBE- The byte index to the end of the receiver FIFO
buffer.

$029C-RIDBS- The byte index to the start of the receiver FIFO
buffer.

$029D-ROOBS- The byte index to the start of the transmitter FIFO
buffer.

$029E-RODBE- The byte index to the end of the transmitter FIFO
buffer.

$02A l-ENABL-Holds current active interrupts in the CIA #2 ICR.
When bit 4 is turned on means that the system is waiting. f()r
the Receiver Edge. When bit 1 is turned .on then the system is
receiving data; When bit 0 is turned on then the system is
transmitting data.

THE USER PORT

The user port is meant to connect the Commodore 64 to the outside
world. By using the lines available at this port, you can connect the
Commodore 64 to a printer, a Votrax Type and Talk, a MODEM, even
another computer.

The port on the Commodore 64 is directly connected to one of the
6526 CIA chips. By programming, the CIA will connect to many other
devices.

PORT PIN DESCRIPTION

1 2 3 4 5 6 7 8 9 10 11 12

ABC D E F H J K L M N

INPUT/OUTPUT GUIDE 359

PORT PIN DESCRIPTION

360 INPUT/OUTPUTGUIDE

PIN
DESCRIPTION NOTES

TOP SIDE

1 GROUND
2 +5V (100 mA MAX.)
3 RESET By grounding this pin, the Commodore

64 will do a COLD START, resetting
completely. The pointers to a BASIC
program will be reset, but memory will
not be cleared. This is also a RESET
output for the external devices.

4 CNTl Serial port counter from CIA #1 (SEE
CIA SPECS).

5 SP1 Serial port from CIA #1 (SEE 6526' CIA
SPECS).

6 CNT2 Serial port counter from CIA #2. (SEE
CIA SPECS).

7 SP2 Serial port from CIA #1 (SEE6526 CIA
SPECS).

8 PC2 Handshaking line from CIA #2 (SEE
CIA SPECS).

9 SERIAL This pin is conne:cted to the ATNline of
ATN the serial bus.

10 9 VAC+phase Connected directly to. the Commodore
11 9 VAC-phase 64 transformer (50 mA MAX.).
12 GND

BOTTOM SIDE

A GND The Commodore 64 gives you control
B FLAG2 over PORT B on CIA chip #1. Eight
C PBO lines for input or output are available,
D PB1 as well as 2 lines for handshaking with
E PB2 an outside device. The I/O lines for
F 'PB3 PORT B are controlled by two loca-
H PB4 tions'. One is the PORT itself, and is 10-
J PB5 cated at 56577 ($DDOI HEX). Naturally
K PB6 you PEEKit to. read an INPUT, or- POKE .
L PB7 it to set. an OUTPUT. Each of the eight
M PA2 I/O lines can be set up as either. an
N GND INPUT or an OUTPUT by setting the

DATA DIRECTIONREGISTERproperly.

The DATA DIRECTION REGISTERhas its location at 56579 ($DD03
hex). Each of the eight lines in the PORThas a BIT in the eight-bit DATA
DIRECTIONREGISTER(DDR)which controls whether that line will be an
input or an output. If a bit in the DDR is a ONE, the corresponding line
of the PORT will be an OUTPUT. If a bit in the DDR is a ZERO, the
corresponding line of the PORTwill be an INPUT. For example, if bit 3 of
the DDR is set to 1, then line 3 of the PORT will be an output. A further
example:

If the DDR is set like this:

BIT #: 7 6 5 4 3 2 1 0
VALUE:0 0 1 1 1 0 0 0

You can see that lines 5,4, and 3 will be outputs since those bits are

ones. The rest of the lines will be inputs, since those lines are zeros.

To PEEK or POKE the USER port, it is necessary to use both the DDR
and the PORT itself.

Remember that the PEEK and POKE statements want a number from

0-255. The numbers given in the example must be translated into dec-

imal before they can be used. The value would be:

25 + 24 + 23 = 32 + 16 + 8 = 56

Notice that the bit # for the DDR is the same number that = 2 raised to

a power to turn the bit value on.

(16 = 2j4=2X2x2x2, 8 = 2j3=2x2X2)

The two other lines, FLAG1 and PA2 are different from the rest of the
USER PORT. These two lines are mainly for HANDSHAKING, and are

programmed differently from port B.
Handshaking is needed when two devices communicate. Since one

device may run at a different speed than another device it is necessary

to give the devices some way of knowing what the other device is doing.

Even when the devices are operating at the same speed, handshaking is
necessary to let the other know when data is to be sent, and if it has

been received. The FLAGl line has special characteristics which make it

well suited for handshaking.
FLAG1 is a negative edge sensitive input which can be used as a

general purpose interrupt input. Any negative transition on the FLAG line

will set the FLAG interrupt bit. If the FLAG interrupt is enabled, this will

INPUT/OUTPUTGUIDE 361

couse on INTERRUPT REQUEST. If the FLAG bit is not enabled, it can be

polled from the interrupt register under program control.

PA2 is bit 2 of PORT A of the CIA. It is controlled like any other bit in

the port. The port is located at 56576 ($DDOO). The data direction regis-
ter is located at 56578 ($DD02.)

FOR MORE INFORMATION ON THE 6526 SEE THE CHIP SPECIFICA-
TIONS IN APPENDIX M.

THE SERIAL BUS

The serial bus is a daisy chain arrangement designed to let the Com-
modore 64 communicate with devices such as the VIC-1541 DISK DRIVE

and the VIC-1525 GRAPHICS PRINTER. The advantage of the serial bus

is that more than one device can be connected to the port. Up to 5
devices can be connected to the serial bus at one time.

There are three types of operation over a serial bus-CONTROL,
TALK, and LISTEN. A CONTROLLER device is one which controls operation
of the serial bus. A TALKER transmits data onto the bus. A LISTENER
receives data from the bus.

The Commodore 64 is the controller of the bus. It also acts as a

TALKER (when sending data to the printer, for example) and as a LIS-
TENER (when loading a program from the disk drive, for example).

Other devices may be either LISTENERS (the printer), TALKERS, or both

(the disk drive). Only the Commodore 64 can oct as the controller.
All devices connected on the serial bus will receive all the data

transmitted over the bus. To allow the Commodore 64 to route data to its

intended destination, each device has a bus ADDRESS. By using this
device address, the Commodore 64 can control access to the bus. Ad-

dresses on the serial bus range from 4 to 31.
The Commodore 64 can COMMAND a particular device to TALK or

LISTEN. When the Commodore 64 commands a device to TALK, the de-

vice will begin putting data onto the serial bus. When the Commodore
64 commands a device to LISTEN, the device addressed will get ready to
receive data (from the Commodore 64 or from another device on the

bus). Only one device can TALK on the bus at a time; otherwise, the data
will collide and the system will crash in confusion. However, any number
of devices can LISTEN at the some time to one TALKER.

362 INPUT/OUTPUT GUIDE

COMMON SERIAL BUS ADDRESSES

Other device addresses are possible. Each device has its own ad-
dress. Certain devices (likethe Commodore 64 printer) provide a choice
between two addresses for the convenience of the user.

TheSECONDARYADDRESSis to let the Commodore 64 transmit setup
information to a device. For example, to OPEN a connection on the bus
to the printer, and have it print in UPPERILoWERcase, use the following:

OPEN 1,4,7

where,

1 is the logical file number (the number you PRINT# to),
4 is the ADDRESSof the printer, and

7 is the SECONDARY ADDRESS that tells the printer to go into UPPER/
lOWER case mode.

There are 6 lines used in serial bus operation-3 input and 3 output.
The 3 input lines bring data, control, and timing signals into the Com-
modore 64. The 3 output lines send data, control, and timing signals
from the Commodore 64 to external devices on the serial bus.

SERIAL BUS PINOUTS

INPUT/OUTPUT GUIDE 363

NUMBER DEVICE

4 or 5 VIC-1525 GRAPHIC PRINTER
8 VIC-1541 DISK DRIVE

PIN DESCRIPTION

1 SERIAL SRQ IN
2 GND
3 SERIAL ATN IN/OUT
4 SERIAL ClK IN/OUT
5 SERIAL DATA IN/OUT

6 NO CONNECTION

SERIALSRQ IN: (SERIALSERVICEREQUESTIN)

Any device on the serial bus can bring this signal LOW when it re-
quires attention from the Commodore 64. The Commodore 64 will then

take care of the device. (See Figure 6-4).

ATN

NORMAL

BYTE SENT UNDER ATTENTION (TO DEVICES)-j rDATA BYTES

r
ICLOCK

DATA

ATN
TALKER READY-TO-SEND TALKER SENDING

t
CLOCK

DATA IIT88 Ts+I+TV I I

IJTHLTYEJTEILlTRY JTFUTFR

t I ~ISTENERREADY-FOR.DATA tI EOI-TIMEOUTHANDSHAKE SYSTEMLINE
LISTENER READY-FOR.DATA RELEASE

TALK-ATTENTION TURN AROUND (TALKER AND LISTENER REVERSED)

~EVICE ACKNOWLEDGES IT IS NOW TALKER
TALKER READY-TO.SEND

ATN

DATA

CLOCK

Figure 6-4. Serial

364 INPUT/OUTPUT GUIDE

SERIAL ATN IN/OUT: (SERIAL ATTENTION IN/OUT)

The Commodore 64 uses this signal to start a command sequence for
a device on the serial bus. When the Commodore 64 brings this signal
LOW, all other devices on the bus start listening for the Commodore 64
to transmit an address. The device addressed must respond in a preset
period of time; otherwise, the Commodore 64 will assume that the de-
vice addressed is not on .the bus, and will return an .error in the STATUS

WORD. (See Figure 6-4).

TALKER READY.TO.SEND

I TALKER SENDING

SERIAL BUS TIMING

Notes:
. 1. If maximumtime exceeded,device not present.error.

2. If maximum time exceeded, EOI response required.
3. If maximum time exceeded. frame error.
4. TV and TpR minimum must be60lts for external device to.be a talker.
5. TEl minimum must be BOlts for external device to be a listener.

Bus Timing.

INPUT/OUTPUT GUIDE .365

.Descriptlon Symbol Min. Typ. Max.

ATN RESPONSE (REQUIRED)1 TAT - - 1000p,
LISTENERHOLD.OFF TH 0 - 00

NON-EOI RESPONSE TO RFD2 TNE - 40lts 200lts
BIT SET.UP TALKER4 TS 20p,s 70p,s -
DATA VALID Tv 20lts 20lts -
FRAME HANDSHAKE3 TF 0 20 1000p,s
FRAME TO RELEASE OF ATN TR 20lts - -
BETWEENBYTESTIME Taa 100ltS - -
EOI RESPONSE TIME . TYE 200p,s 250p,s -

EOI RESPONSE HOLD TIMES TEl 60lts - -
TALKER RESPONSE LIMIT TRY 0 30lts 60lts
BYTE.ACKNOWLEDGE4 TpR 20lts 30lts -
TALK.ATTENTION RELEASE TTK 20p,s 30lts 1O°ItS
TALK.ATTENTION ACKNOWLEDGE TDe 0 - -
TALK.ATTENTIONACK.HOLD TDA BOlts - -
EOI ACKNOWLEDGE TFR 60lLS - -

SERIAL CLK IN/OUT: (SERIAL CLOCK IN/OUT)

This signal is used for timing -the data sent on the serial bus. (See
Figure .6-4).

SERIAL DATA IN/OUT:

Data on the serial bus is transmitted one bit at a time on this line. (See
Figure 6-4.)

THE EXPANSION PORT

The expansion connector is a 44-pin (22/22) female edge connector on
the back of the Commodore 64. With the Commodore 64 facing you, the
expansion connector is on the far right of the back of the computer. To
use the connector, a 44-pin (22/22) male edge connector is required.

This port is used for expansions of the Commodore 64 system which
require access to the address bus or the data bus of the computer.
Caution is necessary when using the expansion bus, because it's possi-
ble to damage the Commodore 64 by a malfunction of your equipment.

The -expansion bus is arranged as -follows:
22 21 20 1918 17 1615 1. 13 12 11 10 II 8 -7 6 5 . 3 2 1

ZYXWVUTSRPNMlKJHF-EDCBA

The signals available on the connector are as follows:

366 INPUT/OUTPUT GUIDE

-
NAME PIN DESCRIPTION

GND 1 System ground
+5 VDC 2 (Total USER PORT and CARTRIDGEdevices can
+5 VDC 3 draw no more than 450 mA.)
IRQ 4 Interrupt Request line to 6502 (active low)
R/w 5 Read/Write
DOT
CLOCK 6 8.18 MHz video dot clock
1/01 7 I/O block 1 @ $DEOO-.$DEFF(active low) unbuffered I/O
GAME 8 active low Is ttl input
EXROM 9 active low Istt' input
1/02 10 I/O block 2 @ $DFOO-$DFFF (active low) buff'ed Is ttl

output

INPUT/OUTPUTGUIDE 367

NAME 'PIN DESCRIPTION

ROML 11 8K decoded RAM/ROMblock @ $8000 (active low)
buffered Is ttl output

BA 12 Bus available signal from the VIC-IIchip
unbuffered 1 Is load max.

DMA 13 Direct- memory access request line (active low input)
Is ttl input

D7 14 Data bus bit 7 ,

D6 15 Data bus bit 6
D5 16 Data -bus bit 5
D4 17 Data bus bit 4 unbuffered, 1 Is ttl load max
D3 18 Data bus bit 3
D2 19 Data bus bit 2
Dl 20 Data bus bit 1
DO 21 Data bus bit 0 ..
GND 22 System ground
GND A
ROMH B 8K decoded RAM/ROM block @ $EOOObuffered
RESET C 6502 RESETpin (active low) buff'ed ttl out/unbuff'ed in
NMI D 6502 Non Maskable Interrupt (active low) buff'ed ttl out,

unbuff'ed in

cp2 E Phase 2 system clock
A15 F Address bus bit 15 ...

A14 H Address bus bit 14

A13 J Address bus bit 13
A12 K Address bus bit 12
All L Address bus bit 11

, Al0 M Address bus bit 10
,

Address bus bit 9I A9 N
AS P Address bus bit 8 unbuffered, 1 Is ttl load max

A7 R Address bus bit 7
A6 S Address bus bit 6

A5 T Address bus bit 5

A4 U Address bus bit 4

A3 V Address bus bit 3

A2 W Address- bus bit 2

Al X Address bus bit 1

AO y. Address bus bit 0 .J
GND Z System ground

Overbar means active low

Following is a description of some important lines on the expansion
port:

Pins 1,22,A,Z are connected to the system ground.
Pin' 6 is the DOT CLOCK. This is the S.1S-MHz video dot clock. All

system timing is derived from this clock.
Pin 12 is the BA (BUS AVAILABLE)signal from the VIC-II chip. This line

will go low 3 cycles before the VIC-II takes over the system busses, and
remains'low until the VIC-II is finished fetching display information.

Pin 13 is the DMA (DIRECTMEMORY ACCESS) line. When this line is
pulled low, the address bus, the data bus, and,the Read/Write line of
the 6510 processor chip enter high-impedance state mode. This allows.
an external processor to. take control of the system busses. This line
should only be pulled low when the q,2 clock is low. Also, since the
VIC-II chip will continue to perform display DMA, the external device
must conform to the VIC-II timing. (See VIC-II timing. diagram.) This line
is pulled up on the Commodore 64.

2-80 MICROPROCESSOR CARTRIDGE

Reading this book and using your computer has shown you just how
versatile your Commodore 64 really is. But what makes this machine
even more capable of meeting your needs is the addition of peripheral
equipment. Peripherals are things like Datassette TO' recorders, disk
drives, printers, and modems. All these items can be added to your
Commodore 64 through the various ports and sockets on the bac::k of
your machine. The thing that makes Commodore peripherals so good is
the fact that our peripherals are "intelligent." That means that they don't
take up valuable Random Access Memory space when they're in use.
You're free to use all 64K of memory in your Commodore 64.

Another advantage of your Commodore 64 is the fact most programs
you write on your Commodore 64 today will be upwardly compatible
with any new Commodore computer you buy in the future. This is par-
tially because of the qualities of the computer's Operating System (OS).

However, there is one thing that the Commodore OS can't do: make
your programs compatible with a computer made by another company.

368 INPUT/OUTPUTGUIDE

Most of the time you won't even have to think about using another com-
pany's computer, because your Commodore 64 is so easy to use. But for
the occasional user who wants to take advantage of software that may
not be available in Commodore 64 format we have created a Commo-
dore CP/M@ cartridge.

CP/M@ is not a "computer dependent" operating system. Instead it
uses some of the memory space normally available for programming to
run its own operating system. There are advantages and disadvantages
to this. The disadvantages are that the programs you write will have to
be shorter than the programs you can write using the Commodore 64's
built-in operating system. In addition, you can NOT use the Commodore
64's powerful scree.n editing capabilities. The advantages are that you
can now use a large amount of software that has been specifically de-
signed for CP/M@and the Z-SO microprocessor, and the programs that
you write using the CP/M@operating system can be transported and run
on any other computer that has CP/M@ and a Z-SO card.

By the way, most computers that have a Z-SO microprocessor require
that you go inside the computer to actually install a Z-SO card. With this
method you have to be very careful not to disturb the delicate circuitry
that runs the rest of the computer. The Commodore CP/M@ cartridge
eliminates this ~assle because our Z-SO cartridge plugs into the back of
your Commodore 64 quickly and easily, without any messy wires that
can cause problems later.

USING COMMODORE CP/M@

The Commodore Z-SO cartridge let's you run programs designed for a
Z-SO microprocessor on your Commodore 64. The cartridge is provided
with a diskette containing the Commodore CP/M@operating system.

RUNNING COMMODORE CP/M@

1) LOADthe CP/M@ program from your disk drive.
2) Type RUN.
3) Hit the .:~:lIIm/. key.

INPUT/OUTPUTGUIDE 369

At this point the 64K bytes of RAM in the Commodore 64 are accessi-
ble by the built-in 6510 central processor, OR 48K bytes of RAM are
available for the Z-80 central processor. You can shift back and forth
between these two processors, but you can NOT use them at the same
time in a single program. This is possible because of your Commodore
64's sophisticated timing mechanism.

Below is the memory address translation that is performed on the
Z-80 cartridge. You should notice that by adding 4096 bytes to the
memory locations used in CP/M@ $1000 (hex) you equal the memory
addresses of the normal Commodore 64 operating system. The corre-
spondence between Z-80 and 6510 memory addresses is as follows:

370 INPUT/OUTPUTGUIDE

Z-80 ADDRESSES 6510 ADDRESSES

DECIMAL HEX DECIMAL HEX

0000-4095 OOOO-OFFF 4096-8191 1000- 1FFF
4096-8191 1000- 1FFF 8192-12287 2000-2FFF
8192-12287 2000-2FFF 12288- 16383 3000-3FFF

12288- 16383 3000-3FFF 16384-20479 4000-4FFF
16384-20479 4000-4FFF 20480-24575 5000-5FFF
20480-24575 5000-5FFF 24576-28671 6000-6FFF
24576-28671 6000-6FFF 28672-32767 7000-7FFF
28672-32767 7000-7FFF 32768-36863 8000-8FFF
32768-36863 8000-8FFF 36864-40959 9000-9FFF
36864-40959 9000-9FFF 40960-45055 AOOO-AFFF
40960-45055 AOOO-AFFF 45056-49151 BOOO- BFFF

45056-49151 BOOO- BFFF 49152-53247 COOO-CFFF
49152-53247 COOO-CFFF 53248-57343 DOOO- DFFF

53248-57343 DOOO- DFFF 57344-61439 EOOO- EFFF

57344-61439 EOOO-EFFF 61440- 65535 FOOO- FFFF

61440-65535 FOOO- FFFF 0000-4095 OOOO-OFFF

-

To TURN ON the Z-80 and TURN OFF the 6510 chip, type in the follow-
ing program:

-~

10 F:Et1 THI S PROGRAM I S TO BE USED /.ojI TH THE 2::;:121CFIRD
20 REM IT FIRST STORES 280 DATA AT $1000
(Z::::0=$000121)
30 REt'l THEt.1 I T TURt~S OFF THE 6510 I F.:C:!':; At.m EI'.IFiBLES
40 REt1 THE 2:30 CARD. THE 280 CAF:II t'JUST :E:E TUF:NEIJ
OFF
50 REM TO REENABLE THE 6510 SYSTEM.
100 REM STORE 280 DATA
11121F:EAD B: REt1 GET S I 2E OF 28121 CODE TO :E:E f'10"iED
120 FOR 1=4096 TO 4096+B-l:REM MOVE CODE
130 READ A:POKE I,A
14121NE:,n I
20~3 REM RUt'l Z8121CODE
;;:H~ POKE 563:3::::,127 .

220 POKE 56832,0121
230 POKE 56333~129 :
28121 DOt~E
240 H.\II
1000 REM 288 MACHINELANGUAGECODE DATA SECTION
101121 DATA 18 : REM SIZE OF DATA TO BE PASSED
1100 REM 280 TURN ON CODE
1110 DATA OO,OO,00 : REM OUR Z80 CARD REQUIRES
TURN ON TIME AT $0000
1200 REM Z80 TASK DATA HERE
1210 DATA 33,02,245 : REM LD HL,NN (LOCATION ON
SCF:EEt-1)
1220 DATA 52 : REM INC HL (INCREMENT THAT LOCATION)
1300 F:Et1 2::::8 SELF - TUFH.IOFF DfiTfi HEF.:E
1310 DATA 62,01 : REM LD A,N
1320 DATA 50,00,206 : REM LD (NN),A :I~) LOCATION
1330 DATA 00,00,00 : REM Nap: NOP:NOP
1340 DATA 195,OO,OO : REM JMP $0000

REM TURN OF 6510 IRQ'S
REM TURN ON 280 CARD
REM TURN ON 6510 IRQ'S WHEN

For more details about Commodore CP/M@and the Z-80 microproces-

sor look for the cartridge and the Z-80 Reference Guide at your local
Commodore computer dealer.

INPUT/OUTPUT GUIDE 371

APPENDIX A

ABBREVIATIONS FOR
BASIC KEYWORDS

As a time-saver when typing in programs and commands, Commo-
dore 64.BASIC allows the user to abbreviate' most keywords. The ab-
breviation for PRINT is a question mark. The abbreviations for' other

'words are made by typing the first one or two letters of the word, fol-
lowed by the SHIFTed next letter of the word. If the abbreviations are
used in a program line; the keyword will LISTin the full form.

Looks like Looks like
Com- Abbrevi- this on Com- Abbrevi- this on
mand ation screen mand ation screen

AI3S AEmiB A [I] END EEmiN E 0
AND AEmiN AIZI EX? EImiIX E

ASC AEmiS A FN NONE FN

ATN A EmIT AD FOR F BID 0 F 0
CHR$ c BIIiI H C[]] FRE F EDIIiI.R F bj

CLOSE CLBIIiI 0 CLO GET G BID E GEl
CLR C BIIiI L cD GET# NONE' GET#

CMD C BIIiI M cIS] GOSUB GO BID S GO

CONT clDDo C,D GOTO G.O GO

COS NONE COS IF NONE IF

DATA DBIIIIA DI!! INPUT NONE INPUT

DEF D BIIiI E DEI INPUT# IBIIiIN I .IZI

DIM D BIIiII DrLJ INT NONE INT

374 . APPENDIX A

APPENDIX A 375

Looks like Looks like
Com- Abbrevi- this on Com- Abbrevi- this on
mand ation screen mand ation screen

LEFT$ LE lID F LEQ RIGHT$ R 11IIII I R

LEN . NONE LEN RND REDID N RIZJ

LET L IDIID E LEJ RUN REmI u R[£I
LIST LBID' L SAVE SIIIIiIA S

LOAD L IDIID 0 LO SGN 5 BID G S[]
LOG NONE LOG SIN 5 BID I 51:\]

MID$ MBID I MEJ SPC(5 BID P sO
NEW NONE NEW SQR 5 IDIID Q sI8J
NEXT NIDIIDE N.EI STATUS ST ST

.NOT N 11IIII 0 NO STEP STIDIID E STB

ON NONE ON STOP s.1DIID T S[]

.OPEN o IDIID P 00 STR$ STBID R STQ

OR NONE OR SYS 5 BID Y s[]
PEEK P11IIII E PEl ITAB(TEDID A T

POKE p.1IIIII 0 pO
I TAN

NONE TAN

POS NONE POS THEN T BID H TO

PRINT ? ? TIME TI TI

PRINT# pBllDR PbJ TlME$ TI$ TI$

READ R.IIIIII E REI USR uBlDs U

REM NONE REM VAL vEDlDA V

RESTOREREIIIIII 5 RE VERIFY VBlDE vEl
RETURNRElID T RE[] WAIT WIIIIIIA W

APPENDIX B

SCREEN DISPLAY CODES

The following chart lists all of the characters built into the Commodore
64 character sets. It shows which numbers should be POKEd into screen

memory (locations 1024-2023) to get a desired character. Also shown is
which character corresponds to a number PEEKed from the screen.

Two character sets are available, but only one set at a time. This
means that you cannot have characters from one set on the screen at
the same time you have characters from the other set displayed. The

sets are switched by holding down the EDIIiI and [t keys simul-
taneously.

From BASIC, POKE 53272,21 will switch to upper case mode and
POKE 53272,23 switches to lower case.

Any number on the chart may also be displayed in REVERSE.The
reverse character code may be obtained by adding 128 to the values
shown.

If you want to display a solid circle at location 1504, POKE the code
for the circle (81) into location 1504: POKE .1504,81.

There is a corresponding memory location to control the color of each
character displayed on the screen (locations 55296-56295). To change
the color of the circle to yellow (color code 7) you would POKEthe corre-
sponding memory location (55776) with the character color: POKE
55776,7.

Refer to Appendix Dfor the complete screen and color memory maps,
along with color codes.

NOTE: The following POKEs display the same symbol in set 1 and 2: 1, 27-64,
91-93,96-104, 106-121, 123-127.

SCREEN CODES
SET 1 SET2 POKE I SET 1 SET2 POKE SET 1 SET2 POKE

@ 0 C c 3 F f 6

A a 1 D d 4 G 9 7

B b 2 E e 5 H h 8

376 APPENDIX B

SET 1 SET 2 POKE SET 1 SET 2 POKE SET 1 SET2 POKE

I i 9 % 37 A 65

J j 10 & 38 m B 66

K k 11 I 39 B C 67

L I 12 (40 EJ D 68

M m 13) 41 E 69

N n 14 * 42 bJ F 70

0 0 15 + 43 D G 71

P P 16 . 44 [J] H 72

Q q 17 - 45 &J I 73

R r 18 46 J 74

S s 19 I 47 EJ K 75

T t 20 0 48 0 L 76

U u 21 1 49 (SJ M 77

V v 22 2 50 IZJ N 78

W w 23 3 51 0 0 79

X x 24 4 52 0 P 80

Y Y 25 5 53 . Q 81

Z z 26 6 54 bJ R 82

[27 7 55 S 83

£ 28 8 56 D T 84

] 29 9 57 Cd U 85

t 30 58 V 86

+- 31 . 59 C W 87.. 32 < 60 X 88

33 = 61 [] Y 89

34 > 62 [l] Z 90

35 I ? 63 EI3 91

$
36 I

B 64 92

APPENDIX B 377

378 APPENDIXB

SET1 SET2 POKE SET1 SET2 POKE SET1 SET2 POKE

OJ 93 105 [] 117
ITTI . 94 [] 106 [] 118

95 [E 107 Lj 119- 96 108 120

IJ 97 [g 109 121

III 98 Ii] 110 0 0 122

D 99 111 II] 123

0 100 ca 112 124

0 101 E9 113 125

II 102 @ 114 126

D 103 BJ 115 127

104 (] 116

Codes from 128-255are reversed Images of codes 0-127.

APPENDIX C

ASCII AND CHR$ CODES

This appendix shows you what characters will appear ifyou PRINT

CHR$(X), for all possible values of X. It will also show the values ob-

tained by typing PRINT ASC("x"), where x is any character you can type.

This is useful in evaluating the character received in a GET statement,

converting upper/lower case, and printing character based commands

(like switch to upper/lower case) that could not be enclosed in quotes.

APPENDIX C 379

PRINTS CHR$ PRINTS CHRS PRINTS CHR$ PRINTS CHR$

0 II 17
.. 34 3 51

1 - 18 # 35 4 52

2 II 19 $ 36 5 53

3 II 20 % 37 6 54

4 21 & 3a 7 55

- 5 22 . 39 a 56

6 23 (40 9 57

7 24 41 58

DlsABLES_tla 25 * 42 59.

ENABLES_tl9 26 + 43 C 60

10 27 . 44 = 61

11 - 28 - 45 => 62

12 II 29 46 ? 63

... 13 . 30 / 47 @ 64

_14 . 31 0 48 A 65

15 11II 321 1 49 B 66

16 ! 33 2 50 C 67

380 APPENDIXC

PRINTS CHR$ PRINTS CHR$ PRINTS CHR$ PRINTS CHR$

D 68 97 ITTI 126 Grey3 155

E 69 rn 98 127 . 156
F 70 E3 99 128 iii 157
G 71 EJ 100 Orange 129 - 158
H 72 Lj 101 130 - 159
I 73 g 102 131 11II 160
J 74 D 103 132 IJ 161
K 75 [] 104 f1 133 162
L 76 t;] 105 13 134 0 163
M 77 106 f5 135 D 164
N 78 107 f7 136 0 165
0 79 0 108 f2 137 11III 166
P 80 rsJ 109 f4 138 0 167
Q 81 0 110 f6 139 168
R 82 0 111 f8 140 169

S 83 0 112 _11III141 [] 170
T 84 . 113.. 142 [J3 171
U 85 D 114 143 172

V 86 115 .. 144 [g 173
W 87 0 116 II 145 6J 174
X 88 Cd 117 . 146 175
Y 89 118 II 147 [l3 176
Z 90 C 119 . 148 177

[91 120 Brown 149 tI3 178
£ 92 [] 121 Lt.Red 150 EIJ 179

] 93 [I] 122 Grey1 151 D 180
i 94 EE 123 Grey2 152 [] 181- 95 IJ 124 Lt.Green153 [] 182

B 96 rn 125 Lt. Blue 154 1:1 183

CODES
CODES
CODE

192.223
224-254
255

SAME AS
SAME AS
SAME AS

96.127
160;.190
126

APPENDIXC 381

PRINTS CHR$ PRINTS CHR$ PAINTS CHR$ PAINTS CHR$

184 0 186 188 190

. 185. l 187 E!J 189 191

APPENDIX D

SCREEN AND COLORMEMORY MAPS

The following charts list which memory locations control placing char-
acters on the screen, and the locations used to change individual char-
acter colors, as well as showing character color codes.

SCREEN MEMORY MAP

10
COLUMN

20 30

1024-
1064
1104
1144
1184
1224
1264
1304
1344
1384
1424
1464
1504
1544
1584
1624
1664
1704
1744
1784
1824
1864
1904
1944
1984

'"
10 ~

20

24

382 APPENDIX D

The actual values to POKE into a color memory location to change a
character's color are:

For example, to change the color of a character located at the upper
left-hand corner of the screen to red, type: POKE 55296,2.

COLOR MEMORY MAP

10
COLUMN

20 30 39

55335
.

55296-
55336
55376
55416
55456
55496
55536
55576
55616
55656
55696
55736
55776
55816
55856
55896
55936
55976
56016
56056
56096
56136
56176
56216
56256

10 ~

20

24
f

56295

APPENDIX D 383

BLACK 8 ORANGE
1 WHITE 9 BROWN
2 RED l(ij light RED
3 CYAN 11 GRAY 1
4 PURPLE 12 GRAY 2

5 GREEN 13 light GREEN
6 BLUE 14 light BLUE
7 YELLOW 15 GRAY 3

APPENDIX E

MUSIC NOTE VALUES

This appendix contains a complete list of Note#, actualnote, and the
values to be POKEd into the HI FREQ and LOW FREQ registers of the
sound chip to produce the indicated note.

384 APPENDIXE

MUSICALNOTE OSCILLATOR FREQ

NOTE OCTAVE DECIMAL HI LOW

0 C-O 268 1 12
1 C#-O 284 1 28
2 D-O 301 1 45
3 D#-O 318 1 62
4 E-O 337 1 81
5 F-O 358 1 102
6 F#-O 379 1 123
7 G-Q 401 1 145
8 G#-O 425 1 169
9 A-O 451 1 195

10 A#-O 477 1 221
11 8-0 506 1 250
16 C-l 536 2 24
17 C#-1 568 2 56
18 D-l 602 2 90
19 D#-1 637 2 125
20 E-l 675 2 163
21 F-l 716 2 204
22 F#-1 758 2 246
23 G-l 803 3 35
24 G#-1 851 3 83

25 A-I 902 3 134

26 A#-1 955 3 187
27 8-1 1012 3 244
32 C-2 1072 4 48

APPENDIXE 385

MUSICALNOTE OSCILLATORFREQ

NOTE OCTAVE DECIMAL HI LOW

33 C#-2 1136 4 112
34 D-2 1204 4 180
35 D#-2 1275 4 251
36 E-2 1351 5 71
37 F-2 1432 5 152
38 F#-2 1517 5 237
39 G-2 1607 6 71
40 G#-2 1703 6 167
41 A-2 1804 7 12
42 A#-2 1911 7 119
43 B-2 2025 7 233
48 C-3 2145 8 97
49 C#-3 2273 8 225
50 D-3 2408 9 104
51 D#-3 2551 9 247
52 E-3 2703 10 143
53 F-3 2864 11 48
54 F#-3 3034 11 218
55 G-3 3215 12 143
56 G#-3 3406 13 78
57 A-3 3608 14 24
58 A#-3 3823 14 239
59 B-3 4050 15 210
64 C-4 4291 16 195
65 C#-4 4547 17 195
66 D-4 4817 18 209
67 D#-4 5103 19 239
68 E-4 5407 21 31
69 F-4 5728 22 96
70 F#-4 6069 23 181
71 G-4 6430 25 30
72 G#-4 6812 26 156
73 A-4 7217 28 49
74 A#-4 7647 29 223
75 6-4 8101 31 165
80 C-5 8583 33 135
81 C#-5 9094 35 134

386 APPENDIXE

MUSICAL NOTE OSCILLATORFREQ

NOTE OCTAVE DECIMAL HI LOW

82 D-5 9634 37 162
83 D#-5 10207 39 223
84 E-5 10814 42 62
85 F-5 11457 44 193
86 F#-5 12139 47 107
87 G-5 12860 50 60
88 G#-5 13625 53 57
89 A-5 14435 56 99
90 A#-5 15294 59 190 ..
91 B-5 16203 63 75
96 C-6 17167 67 15
97 C#-6 18188 71 12
98 D-6 19269 75 69
99 D#-6 20415 79 191

100 E-6 21629 84 125
101 F-6 22915 89 131
102 F#-6 24278 94 214
103 G-6 25721 100 121
104 G#-6 27251 106 115
105 A-6 28871 112 199
106 A#-6 30588 119 124
107 B-6 32407 126 151
112 C-7 34334 134 30
113 C#-7 36376 142 24
114 D-7 38539 150 139
115 D#-7 40830 159 126
116 E-7 43258 168 250
117 F-7 45830 179 6
118 F#-7 48556 189 172
119 G-7 51443 200 243
120 G#-7 54502 212 230
121 A-7 57743 225 143
122 A#-7 61176 238 248
123 B-7 64814 253 46

FILTER SEnlNGS

APPENDIXE 387

Location Contents

54293 Low cutoff frequency (0-7)

54294 High cutoff frequency (0-255)

54295 Resonance (bits 4-7)

Filter voice 3 (bit 2)

Filter voice 2 (bit 1)

Filter voice 1 (bit 0)
54296 High pass (bit 6)

Bandpass (bit 5)

Low pass (bit 4)
Volume (bits 0- 3)

APPENDIX F

BIBLIOGRAPHY

Addison-Wesley "BASIC and the Personal Computer", Dwyer
and Critchfield

Compute "Compute's First Book of PET/CBM"

Cowbay Computing "Feed Me, I'm Your PET Computer", Carol Al-
exander

"Looking Good with Your PET", Carol Alexan-
der

"Teacher's PET-Plans, Quizzes, and An-
swers"

Creative Computing "Getting Acquainted With Your VIC 20",
T. Hartnell

Dilithium Press "BASIC Basic-English Dictionary for the PET",
Larry Noonan

"PET BASIC", Tom Rugg and Phil Feldman

Faulk Baker Associates "MaS Programming Manual", MaS Technol-
ogy

Hayden Book Co. "BASIC From the Ground Up", David E. Simon

"I Speak BASIC to My PET", Aubrey Jones, Jr.

"Library of PETSubroutines", Nick Hampshire

"PET Graphics", Nick Hampshire

"BASIC Conversions Handbook, Apple, TRS-
80, and PET", David A. Brain, Phillip R.
Oviatt, Paul J. Paquin, and Chandler P. Stone

388 APPENDIX F

Howard W. Sams

Little, Brown & Co.

McGraw-Hili

Osborne/ McGraw-Hili

P. C. Publications

"The Howard W. Sams Crash Course in Mi-

crocomputers", louis E. Frenzel, Jr.

"Mostly BASIC: Applications for Your PET",
Howard Berenbon

"PET Interfacing", James M. Downey and Ste-
ven M. Rogers

"VIC 20 Progrommer!s Reference Guide", A.
Finkel, P. Higginbottom, N. Harris, and M.
Tomczyk

"Computer Games for Businesses, Schools,
and Homes", J. Victor Nagigian, and William
S. Hodges

"The Computer Tutor: learning Activities for
Homes and Schools", Gary W. Orwig, Univer-
sity of Central Florida, and William S. Hodges

"Hands-On BASIC With a PET", Herbert D.
Peckman

"Home and Office Use of VisiCalc", D.
Castlewitz, and L. Chisa.uki

"PET/CBM Personal Computer Guide", Carroll
S. Donahue

"PET Fun and Games", R. Jeffries and G.
Fisher

"PET and the IEEE", A. Osborne and C.
Donahue

"Some Common BASIC Programs for the PET",
L. Poole, M. Borchers, and C. Donahue

"Osborne CP/M User Guide", Thom Hogan

"CBM Professional Computer Guide"

"The PET Personal Guide"

"The 8086 Book", Russell Rector and .George
Alexy

"Beginning Self-Teaching Computer lessons"

APPENDIX F 389

Prentice-Hall "The PET Personal Computer for Beginners",
S. Dunn and V. Morgan

Reston Publishing Co. "PET and the IEEE 488 Bus (GPIB)", Eugene
Fisher and C. W. Jensen

"PET BASIC-Training Your PET Computer",
Ramon Zamora, Wm. F. Carrie, and B.
Allbrecht

"PET Games and Recreation", M. Ogelsby, L.
Lindsey, and D. Kunkin

"PET BASIC", Richard Huskell

"VIC Games and Recreation"

Telmas Courseware

Ratings

Total Information Ser-
vices

"BASIC and the Personal Computer", T. A.
Dwyer, and M. Critchfield

"Understanding Your PET/CBM, Vol. 1, BASIC
Programming~'

"Understanding Your VIC", David Schultz

Commodore Magazines provide you with the most up-to-date infor-

mation for your Commodore 64. Two of the most popular publications
that you should seriously consider subscribing to are:

COMMODORE-The Microcomputer Magazine is published bi-monthly
and is available by subscription ($15.00 per year, U.S., and $25.00 per

.year, worldwide)..

POWER/PLAY-The Home Computer Magazine is published quarterly
and is available by subscription ($10.00 per year, U.S., and $15.00 per
year worldwide).

390 APPENDIX F

APPENDIX G

VIC CHIP REGIST.ERMAP

53248 ($DOOO) Starting (Base) Address

APPENDIX G 391

Register #.
.Dec Hex D87 D86 D85 D84 D83 D82 D81 D80

0 0 SOX7 SOXO SPRITE 0 X

Component

1 I SOY7 SOY SPRITE 0 Y

Component

2 2 SIX7 SIXO SPRITE I X

3 3 SIY7 SIYO SPRITE 1 Y

4 4 S2X7 S2XO SPRITE 2 X

5 5 ;S2Y7 S2YO SPRITE 2 Y

6 6 !S3X7 S3XO SPRITE 3 X

7 7 S3Y7 S3YO SPRITE 3 Y

8 8 S4X7 S4XO SPRITE 4 X

9 9 S4Y7 S4YO SPRITE 4 Y

10 A S5X7 S5XO SPRITE 5 X

II 8 S5Y7 S5YO SPRITE 5 Y

12 C S6X7 S6XO SPRITE 6 X

13 D S6Y7 S6YO SPRITE 6 Y

14 E S7X7 S7XO SPRITE 7 X

Component

15 F !s7Y7 S7YO SPRITE 7 Y

Component

16 10 !s7X8 S6X8 S5X8 S4X8 S3X8 S2X8 slxa SOX8 MSB of X

COORD.

17 11 Rea EeM BMM BlNK RSEl YSel2 YSell YSClO YSCROLL
MODE

18 12 RC7 RC6 RC5 RC4 RC3 RC2 RCI Reo RASTER

19 13 LPX7 LPXO LIGHT PEN X

20 14 PY7 LPYO LIGHT PEN Y

392 APPENDIXG

Register #
Dee HexDB7 DB6 DB5 DB4 DB3 DB2 DB1 DBO

21 15 SE7 SEO SPRITE

ENABLE

(ON/OFF)

22 16 N.C. N.C. RST MCM CSEL XSCl2 XSCl1 XSCLO
X SCROLL
MODE

23 17 SEXY7 SEXYO SPRITE

EXPAND Y

24 18 VS13 VS12 VSll VS10 CB13 CB12 CBll N.C. SCREEN and

Character
Memory Base
Address

25 19 IRQ N.C. N.C. N.C. LPIRQ ISSC ISBC RIRQ Inte rrupt

Request's

26 lA N.C. N.C. N.C. N.C. MLPI MISSC MISBC MRIRQ Interrupt

Request
MASKS

27 lB BSP7 BSPO Background-

Sprite
PRIORITY

28 lC SCM7 SCMO MUlTICOLOR

SPRITE

SELECT

29 lD SEXX7 SEXXO SPRITE

EXPAND X

30 IE SSC/ SSCO Sprite-Sprite

COLLISION

31 IF SBC7 SBCO Sprite-

Background
COlLISION

COLOR CODES

LEGEND:

ONLY COLORS 0-7 MAY BE USED IN MULTICOLOR CHARACTER MODE

APPENDIX G 393

Register # ColorDee Hex

32 20 BORDER COLOR

BACKGROUND33 21
COLOR 0

BACKGROUND
34 22

COLOR 1

BACKGROUND
35 23

COLOR 2

BACKGROUND
36 24

COLOR 3

SPRITE
37 25

MULTICOLOR 0

SPRITE
38 26 MULTICOLOR 1

Dee Hex Color

0 0 BLACK

1 1 WHITE

2 2 RED

3 3 CYAN

4 4 PURPLE

5 5 GREEN

6 6 BLUE

7 7 YELLOW

Register # ColorDee Hex

39 27 SPRITE 0 COLOR

40 28 SPRITE 1 COLOR

41 29 SPRITE 2 COLOR

42 2A SPRITE 3 COLOR

43 2B SPRITE 4 COLOR

44 2C SPRITE 5 COLOR

45 2D SPRITE 6 COLOR

46 2E SPRITE 7 COLOR

Dee Hex Color

8 8 ORANGE

9 9 BROWN

10 A LT RED

11 B GRAY 1

12 C GRAY 2

13 D LT GREEN

14 E LT BLUE

15 F GRAY 3

APPENDIX H

DERIVING MATHEMATICALFUNCTIONS

Functions that are not intrinsic to Commodore 64 BASIC may be calcu-
lated as follows:

394 APPENDIXH

FUNCTION BASIC EQUIVALENT

SECANT SEC(X)= I/COS(X)

COSECANT CSC(X)= I/SIN(X)

COTANGENT COT(X)= I/TAN(X)

INVERSE SINE ARCSIN(X)=ATN(X/SQR(- X' X + 1»

INVERSE COSINE ARCCOS(X)= -ATN(X/SQR

(-X'X +1» +7T/2

I

INVERSE SECANT ARCSEC(X)=ATN(X/SQR(X' X-I»
INVERSE COSECANT ARCCSC(X)= ATN(X/SQR(X' X-I »

+(SGN(X)-I'7T/2
INVERSE COTANGENT ARCOT(X)= ATN(X)+7T/2

I,
HYPERBOLIC SINE SINH(X)= (EXP(X)- EXP(- X»/2

HYPERBOLIC COSINE COSH(X)=(EXP(X)+ EXP(- X»/2

HYPERBOLIC TANGENT TANH(X)= EXP(- X)/(EXP(x)+ EXP

(-X»'2+1

HYPERBOLIC SECANT SECH(X)= 2I(EXP(X)+ EXP(- X»
HYPERBOLIC COSECANT CSCH(X)= 2I(EXP(X)-EXP(- X»

HYPERBOLIC COTANGENT COTH(X)= EXP(- X)/(EXP(X)

-EXP(-X»'2+1

INVERSE HYPERBOLIC SINE ARCSINH(X)=lOG(X+SQR(X'X+ I»

INVERSE HYPERBOLIC COSINE ARCCOSH(X)= lOG(X + SQR(X' X-I »

INVERSE HYPERBOLIC TANGENT ARCTANH(X)=lOG«1 +X)/(1-X»/2

INVERSE HYPERBOLIC SECANT ARCSECH(X)= lOG«SQR

(-X'X+ 1)+ l/X)

INVERSE HYPERBOLIC COSECANT ARCCSCH(X)= lOG«SGN(X)' SQR

(X'X+l/x)

INVERSE HYPERBOLIC COTAN- ARCCOTH(X)= lOG«X + 1)/(X-I »/2

GENT

APPENDIX I

PINOUTS FOR INPUT/OUTPUT DEVICES

This appendix is designed to show you what connections may be
made to the Commodore 64.

1) Game I/O
2) Cartridge Slot
3) Audio/Video

Control Port 1

Control Port 2

4) Serial I/O (Disk/Printer)

5) Modulator Output

6) Cassette

7) User Port

2
o

1
o

3
o

o
6

o
7

o
8

4
o

5
o

o
9

APPENDIXI 395

Pin Type Note
I JOYAO
2 JOYA1
3 JOYA2
4 JOYA3
5 POT AY
6 BUTTON NLP
7 +5V MAX. 50mA
8 GND
9 POT AX

Pin Type Note
I JOYBO

2 JOYBI

3 JOYB2
4 JOYB3

5 POT BY
6 BUTTON B
7 +5V MAX. 50mA

8 GND
9 POT BX

Cartridge Expansion Slot

22212019181718151.1312111098785.321

ZYXWVUTSRPNMLKJHFEDCBA

Audio/Video

Serial I/O

396 APPENDIX I

Pin Type

1 GND
2 +5V
3 +5V
4 iRQ
5 R/W
6 Dot Clock
7 I/O 1
8 GAME
9 EXROM

10 I/O 2
11 ROM[

Pin Type

A GND
B ROMH
C RESET
D NMi
E S 02
F A15
H A14
J A13
K A12
L All
M Al0

Pin Type Note
1 LUMINANCE
2 GND
3 AUDIO OUT
4 VIDEO OUT
5 AUDIO IN

Pin Type
1 SERIALSRQIN
2 GND
3 SERIALATN IN/OUT
4 SERIALCLK IN/OUT
5 SERIAL DATA IN/OUT
6 RESET

Pin TVIM

12 BA
13 DMA
14 D7
15 D6
16 D5
17 D4
18 D3
19 D2
20 Dl
21 DO
22 GND

Pin Type

N A9
P A8
R A7
S A6
T A5
U A4
V A3
W A2
X Al
Y AO
Z GND

Cassette

User I/O

12 3 4 5 6 7 8 9 10 11 12

ABC D E F H J K LM N

1 2 3 ." 5 6-----.
A B.C D E F

APPENDIX I 397

Pin Type
A-I GND
B-2 +SV
C-3 CASSETTEMOTOR
D-4 CASSETTEREAD
E-5 CASSETTEWRITE
F-6 CASSETTESENSE

.Pin Type Note
I GND

2 +SV MAX. 100 mA
3 RESET

4 CNT!
5 SPI
6 CNT2
7 SP2

8 PC2
9 SER. ATN IN

10 9 VAC MAX. 100 mA
II 9 VAC MAX. 100 mA

12 GND

Pin Type Note
A GND
B FLAG2
C PBO
D PBI

E PB2
F PB3
H PB4
J PBS
K PB6
l PB7
M PA2
N GND

APPENDIX J

CONVERTING STANDARD
BAS'IC PROGRAMS TO
COMMODORE 64 BASIC

If you have programs written in a BASIC other than Commodore
BASIC, some minor adjustments may be necessary before running them
on the Commodore-64. We've included some hints to make the conver-
sion easier.

String Dimensions
Delete all statements that are used to declare the length of strings. A

statement such as DIM A$(I,J), which dimensions a string array for J
elements of length I, should be converted to the Commodore BASIC
statement DIM A$(J).

Some BASICs use a comma or an ampersand for string concatenation.
Each of these must be changed to a plus sign, which is the Commodore
BASIC operator for string concatenation.

In Commodore-64 BASIC, the MID$, RIGHT$, and lEFT$ functions are
used to take substrings of strings. Forms such as A$(I) to access the Ith
character in A$, or A$(I,J) to take a substring of A$ from position I to J,
must be changed as follows:

Other BASIC

A$(I) = X$
A$(I,J) = X$

Commodore 64 BASIC

A$ = lEFT$(A$,1-1)+X$+MID$(A$,I+1)
A$ = lEFT$(A$,I-l)+X$+MID$(A$,J+ 1)

Multiple Assignments

To set Band C equal to zero, some BASICs allow statements of the
form:

10 lET B=C=0

398 APPENDIXJ

Commodore 64 BASIC would interpret the second equal sign as a
logical operator and set B = -1 if C = O. 'Instead, convert this state-
ment to:'

10 C=0 : B=0

Multiple Statements
Some BASICs use a backslash (\) to separate multiple statements on

a line. With Commodore 64 BASIC, separate all'statements by a colon
(:).
MAT Functions

Programs using the MATfunctions available on some BASICs must be
rewritten using FOR. . .NEXT loops to execute properly.

APPENDIXJ 399

APPENDIX K

ERROR MESSAGES

This appendix contains a complete list of the error messages gener-

ated by. the Commodore-64, with a description of causes.

BADDATA String data was received from an open file, but the pro-
gram was expecting numeric data.
BAD SUBSCRIPT The program was trying to reference an element of
an array whose number is outside of the range specified in the DIM
statement.

BREAK Program execution was stopped because: you hit the I'IIIIkey..

CAN'T CONTINUE The CONT command will not work, either because
the program was never RUN, there has been an error, or a line has
been edited.

DEVICE NOT PRESENT The required I/O device was not available for
an OPEN, CLOSE, CMD, PRINT#, INPUT#, or GET#.
DIVISIONBYZERO Division by zero is a mathem.atical oddity and not
allowed.

EXTRA IGNORED Too many items of data were. typed in response to
an INPUT statement. Only the first few items were accepted.
FILENOT FOUND If you were looking for a file on tape, and END-OF-
TAPEmarker was found. If you were looking on disk, no file with that
name exists.

FILENOT OPEN The file specified in a CLOSE, CMD, PRINT#, INPUT#,
or GET#, must first be OPENed.
FILEOPEN An attempt was made to open a file using the number of
an already open file.
FORMULA TOO COMPLEX The string expression being evaluated
should be split into at least two parts for the system to work with, or a
formula has. too many parentheses.
ILLEGALDIRECT The INPUT statement can only be used within a pro-
gram, and not in direct mode.
ILLEGALQUANTITY A number used as the argument of a function or
statement is out of the allowable range.

400 APPENDIXK

LOAD There is a problem with the program on tape.

NEXT WITHOUT FOR This is caused by either incorrectly nesting loops

or having a variable name in a NEXT statement that doesn't correspond
with one in a FOR statement.

NOT INPUT FILE An attempt was made to INPUT or GET data from a

file which was specified to be for output only.

NOT OUTPUT FILE An attempt was made to PRINT data to a file which

was specified as input only.
OUT OF DATA A READ statement was executed but there is no data
left unREAD in a DATA statement.

OUT OF MEMORY There is no more RAM available for program or

variables. This may also occur when too many FOR loops have been

nested, or when there are too many GOSUBs in effect.

OVERFLOW The result of a computation is larger than the largest
number allowed, which is 1.70141884E+38.

REDIM'D ARRAY An array may only be DIMensioned once. If an array

variable is used before that array is DIM'd, an automatic DIM operation

is performed on that array setting the number of elements to ten, and
any subsequent DIMs will cause this error.
REDO FROM START Character data was typed in during an INPUT
statement when numeric data was expected. Just re-type the entry so

that it is correct, and the program will continue by itself.
RETURN WITHOUT GOSUB A RETURN statement was encountered,
and no GOSUB command has been issued.

STRING TOO LONG A string can contain up to 255 characters.
?SYNTAX ERROR A statement is unrecognizable by the Commodore

64. A missing or extra parenthesis, misspelled keywords, etc.
TYPE MISMATCH This error occurs when a number is used in place of a

string, or vice-versa.
UNDEF'D FUNCTION A user defined function was referenced, but it

has never been defined using the DEF FN statement.

UNDEF'D STATEMENT An attempt was made to GOTO or GOSUB or
RUN a line number that doesn't exist.

VERIFY The program on tape or disk does not match the program cur-

rently in memory.

APPENDIX K 401

APPENDIX L

6510 MICROPROCESSORCHIP
SPECIFICATIONS

DESCRIPTION

The 6510 is a low-cost microcomputer system capable of solving a
broad range of small-systems and peripheral-control problems at
minimum cost to the user.

An 8-bit Bi-Directional I/O Port is located on-chip with the Output Reg-
ister at Address 0000 and the Data-Direction Register at Address 0001.
The I/O Port is bit-by-bit programmable.

The Three-State sixteen-bit Address Bus allows Direct Memory Access-
ing (DMA) and multiprocessor systems sharing a common memory.

The internal processor architecture is identical to the MOS Technology
6502 to provide software compatibility.

FEATURES OF THE 6510

. Eight-BitBi-DirectionalI/O Port

. Single+5-volt supply

. N-channel,silicongate, depletion load technology

. Eight-bitparallel processing. 56 Instructions

. Decimal and binary arithmetic

. Thirteenaddressingmodes

. True indexing capability

. Programmablestack pointer

. Variablelengthstack

. Interruptcapability

. Eight-BitBi-DirectionalData Bus

. Addressablememoryrange of up to 65Kbytes

. Directmemoryaccess capability

. BuscompatiblewithM6800

. Pipeline architecture

. I-MHzand 2-MHzoperation

. Usewith any type or speed memory

402 APPENDIXl

APPENDIXL 403

PIN CONFIGURATION

<I>,IN RES

RDY 2 <1>2IN

IRQ I 3I 1381 Rm

NMI141 137I DBO

AEC DB,

Vcc DB2

AO DB3

A, DB4

A2
6510

DBs

Aa DB6

A4 DB7

As Po

A6 P,

A7 P2

AS Pa

Ag P4

A,O Ps

A" A,S

A12 A14

A,3 GND

404 APPENDIX L

8510 BLOCK DIAGRAM

AEC

I

m iJiQNMi

- - l l
Ao

A,

A.

3 II,

A. a:w
A. It

=>

Ae
ffi

A7 a:
c
c

Ao Ii?w
A W

,. H IIIIII
r11-.J II III <1>0IN

A" :r...
A..

Au
I I I I II II I II II L--Am

A,.

A..
&&&&&&&& &&&&&&&&

LEGEND

fi 8 BITLINE

] ,.

BUS

I = 'BITLINE

6S 10 CHARACTERISTICS

MAXIMUM RATINGS

NOTE: This device contains input protection against damage due to high static volt-
ages or electric fields; however, precautions should be taken to .avoid appUcation of
voltages higher than the maximum rating.

ELECTRICALCHARACTERISTICS
(VCC = 5.0 V :!:5%, VSS = 0, TA= 0° to +70°C)

APPENDIXL 405

RATING SYMBOL VALUE UNIT

SUPPLYVOlTAGE Vcc -0.3 to +7.0 Vcc

.INPUT VOLTAGE Vin -0.3 to +7.0 VDC
c

°cOPERATING TEMPERATURE TA o to + 70

STORAGE TEMPERATURE TSTG - 55 to + 150 °c

CHARACTERISTIC SYM- MIN. TYP. MAX. UNIT
BOl

Input High Voltage

cP1' cP2(in) V1H Vcc - 0.2 - Vcc + l.OV Vac
Input High Voltage- -
RES, PO-P7IRQ, Data Vss + 2.0 - - Vac

Input low Voltage

cP1' cP2(in) V1L Vss - 0.3 - Vss + 0.2 Vac- -
RES, PO-P7IRQ, Data - - Vss + 0.8 Vac

Input leakage Current
(Vin = O.to 5.25V, Vcc = 5.25V)

Logic lin - - 2.5 p,A
cP1' cP2(/n)

- - 100 p,A

Three State (Off State) Input Current
(Vin = 0.4 to 2.4V, Vcc = 5.25V)

Data lines ITS1 - - 10 p,A

Output High Voltage
(lOH = -100p,Aoc,Vcc = 4.75V)

Data, AO-AI5, R/w, PO-P7 VOH Vss + 2.4 - - Vac

CLOCK TIMING

r .~==PWH;1~ TCYC..----
Vcc-O.2V Vcc-O.2V

<PIIN 1
I
I

T 1
---1 D :---

VCC-O.2V
I
1
I

Rm

ADDRESS
FROM
MPU

DATA
FROM

MEMORY

PERIPHERAL
DATA

ADDRESS
ENABLE

CONTROL TIMINGFOR READINGDATAFROM
MEMORYOR PERIPHERALS

406 APPENDIX l

CHARACTERISTIC SYM MIN. TYP. MAX. UNIT
BOl

Out Low Voltage
(lOL= 1.6mAoe,Vee = 4.75V)

Data, AO-AI5, R/w, PO-P7 VOL - - Vss + 0.4 Voe

Power Supply Current Ice - 125 mA

Capacitance C pF

Vin = 0, TA= 25°C, f = lMHz)
Logic, PO-P7 Cin - - 10
Data - - 15
AO-AI5, R/w <=Out - - 12
cP, CCP, - 30 50

CP2 CCP2 - 50 80

<1>1 IN

ADDRESS
FROM
MPU

DATA
FROM

MEMORY

PERIPHERAL
DATA

ADDRESS
ENABLE

CONTROL

CLOCK TIMING

TCYC

_pwH<p, -~

I VCC-O.2V
I

D.2V

---1TD~

VCC-:O.2V

D.2it

T~

R/W

I VCC -O.2V
I
I
I
I
I
I
I
I
I
I
I

TDSU

Vcc-O.2V

TIMING FOR WRITING DATA TO
MEMORY OR PERIPHERALS

APPENDIX l 407

".
o
CO

:I-
......m
Z
C
><

AC CHARACTERISTICS

ELECTRICAL CHARACTERISTICS(Vcc = 5 V :!:5%, Vss = 0 V, TA= 0°-70°C)
CLOCK TIMING 1MHz TIMING 2 MHz TIMING

READ/WRITE TIMING (LOAD = 1TIL) 1 MHz TIMING 2 MHz TIMING

CHARACTERISTIC SYMBOL MIN. TYP. MAX. MIN. TYP. MAX. UNITS

Cycle Time Tcyc 1000 - - 500 - - ns

Clock Pulse Width cpl PWHcp1 430 - - 215 - - ns

(Measured at Vcc - 0.2V) cp2 PWHcp2 470 - - 235 - - ns

FallTime, Rise Time
(Measuredfrom0.2Vto Vcc- 0.2V TF,TR - - 25 - - 15 ns

Delay Time between Clocks
(Measured at 0.2V) TD 0 - - 0 - - ns

CHARACTERISTIC SYMBOL MIN. TYP. MAX. MIN. TYP. MAX. UNITS

Read/Write Setup Time from 6508 TRWS - 100 300 - 100 150 ns

Address Setup Time from 6508 TADS - 100 300 - 100 150 ns

Memory Read Access Time TACC - - 575 - - 300 ns

»......m
Z
o
X

01>
o00

Data Stability Time Period TDsu 100 - - 50 ns

Data Hold Time-Read THR - - ns

Data Hold Time-Write THW 10 30 - 10 30 ns

Data Setup Time from 6510 TMDS - 150 200 - 75 100 ns

Address Hold Time THA 10 30 - 10 30 ns

R/W Hold Time THRw 10 30 - 10 30 ns

Delay Time, Address valid to
<1>2positive transition TAEW 180 - - ns

Delay Time, <1>2positive transition
to Data valid on bus TEDR - - 395 ns

Delay Time, Data valid to <1>2
negative transition TDsu 300 - - ns

Delay Time, R/W negative transition
to <1>2positive transition TWE 130 - - ns

Delay Time, <1>2negative transition
to Peripheral Data valid TpDw - - 1 p,s

Peripheral Data Setup Time TpDsu 300 - - ns

Address Enable Setup Time TAEs 60 60 ns

SIGNAL DESCRIPTION

The 6510 requires a two-phase non-overlapping clock that runs at the
Vcc voltage level.

Address Bus (Ao-A,s)

These outputs are Tn compatible, capable of driving one standard
Tn load and 130 pf.

Eight pins are used for the data bus. This is a Bi-Directional bus,

transferring data to and from the device and peripherals. The outputs are
tri-state buffers capable of driving one standard Tn load and 130 pf.

Reset

This input is used to reset or start the microprocessor from a power

down condition. During the time that this line is held low, writing to or
from the microprocessor is inhibited. When a positive edge is detected
on the input, the microprocessor will immediately begin the reset
sequence.

After a system initialization time of six clock cycles, the mask interrupt

flag will be set and the microprocessor will load the program counter
from the memory vector locations FFFC and FFFD. This is the start loca-

tion for program control.

After Vcc reaches 4.75 volts in a power-up routine, reset must be held

low for at least two clock cycles. At this time the R/W signal will become
valid.

When the reset signal goes high following these two clock cycles, the

microprocessor will proceed with the normal reset procedure detailed
above.

Interrupt Request (IRQ)

This TTL level input requests that an interrupt sequence begin within

the microprocessor. The microprocessor will complete the current in-

struction being executed before recognizing the request. At that time,

the interrupt mask bit in the Status Code Register will be examined. If

the interrupt mask flag is not set, the microprocessor will begin an inter-

rupt sequence. The Program Counter and Processor Status Register are

stored in the stack. The microprocessor will then set the interrupt mask

410 APPENDIX L

flag high so that no further interrupts may occur. At the end of this
cycle, the program counter low will be loaded from address FFFE, and
program counter high from location FFFF, therefore transferring pro-
gram control to the memory vector located at these addresses.

Address Enable Control (AEC)

The Address Bus is valid only when the Address Enable Control line is
high. When low, the Address Bus is in a high-impedance state. This
feature allows easy DMA and multiprocessor systems.

I/O Port (Po-Ps)

Six pins are used for the peripheral port, which can transfer data to
or from peripheral devices. The Output Register is located in RAM at
Address 0001, and the Data Direction Register is at Address 0000. The
outputs are capable at driving one standard TTLload and 130 pf.

Read/Write (R/W)

This signal is generated by the microprocessor to control the direction
of data transfers on the Data Bus. This line is high except when the
microprocessor is writing to memory or a peripheral device.

ADDRESSING MODES

ACCUMULATORADDRESSING- This form of addressing is represented
with a one byte instruction, implying an operation on the accumulator.

IMMEDIATE ADDRESSING-In immediate addressing, the operand is

contained in the second byte of the instruction, with no further memory

addressing required. .

ABSOLUTEADDRESSING-In absolute addressing, the second byte of
the instruction specifies the eight low order bits of the effective address
while the third byte specifies the eight high order bits. Thus, the absolute
addressing mode allows access to, the entire 65K bytes of addressable
memory .
ZERO PAGEADDRESSING- The zero page instructions allow for shorter
code and execution times by only fetching the second byte of the in-
struction and assuming a zero high address byte. Careful use of the
zero page can result in significant increase in code efficiency.

APPENDIXL 411

INDEXED ZERO PAGE ADDRESSING-(X, Y inde?<ing}- This form of
addressing is used in conjunction with the index register and is referred
to as "Zero Page, X" or "Zero Page, Y." The effective address is calcu-
lated by adding the second byte to the contents of the index register.
Since this is a form of "Zero Page" addressing, the content of the sec-
ond byte references a location in page zero. Additonally, due to the
"Zero Page" addressing nature of this mode, no carry is added to the
high order 8 bits of memory and crossing of page boundaries does not
occur.

INDEXED ABSOLUTEADDRESSING-(X, Y indexing}- This form of
addressing is used in conjunction with X and Y index register and is
referred to as "Absolute, X," and "Absolute, Y." The effective address is
formed by adding the contents of X and Y to the address contained in
the second and third bytes of the instruction. This mode allows the index
register to contain the index or count value and the instruction to contain

the base address. This type of indexing allows any location referencing
and the index to modify multiple fields resulting in reduced coding and
execution time.

IMPLIEDADDRESSING-In the implied addressing mode, the address
containing the operand is implicitly stated in the operation code of the
instruction.

RELATIVE ADDRESSING-Relative' addressing is used only with branch
instructions and establishes a destination for the conditional branch.

The second byte of the instruction becomes the operand which is an
"Offset" added to the contents of the lower eight bits of the program
counter when the counter is set at the next instruction. The range of the
offset is - 128 to + 127 bytes from the next instruction.

INDEXED INDIRECTADDRESSING-In indexed indirect addressing (re-
ferred to as [Indirect, X]), the second byte of the instruction is added to
the contents of the X index register, discarding the carry. The result of
this addition points to a memory location on page zero whose contents is
the low order eight bits of the effective address. The next memory loca-
tion in page zero contains the high order eight bits of the effective ad-
dress. Both memory locations specifying the high and low order bytes of
the effective address must be in page zero.

INDIRECTINDEXEDADDRESSING-In indirect indexed addressing (re-
ferred to as [Indirect], Y), the second byte of the instruction points to a
memory location in page zero. The contents of this memory location is

412 APPENDIXl

added to. the contents of the Y index register, the result being the low
order eight bits of the effective address. The carry from this addition is
added to the contents of the next page zero memory location, the result
being the high order eight bits of the effective address.

ABSOLUTEINDIRECT-The second byte of the instruction contains the
low order eight bits of a memory location. The high order eight bits of
that memory location is contained in the third byte of the instruction. The
contents of the fully specified memory location is the low order byte of
the effective address. The next memory location contains the high order
byte of the effective address which is loaded into the sixteen bits of the
program counter.

INSTRUCTION SET.-ALPHABETIC
SEQUENCE

ADC
AND
ASL

BCC
BCS
BEQ
BIT
BMI
BNE
BPL
BRK
BVC
BVS

CLC
CLD
CLI

CLV
CMP
CPX
Cpy

Add Memory to Accumulator with Carry
"AND~' Memory with Accumulator
Shift Left One. Bit (Memory or Accumulator)

Branch on Carry Clear
Branch on Carry Set
Branch on Result Zero

Test Bits in Memory with Accumulator
Branch on. Result Minus
Branch on Result not Zero
Branch on Result Plus
Force Break
Branch on Overflow Clear
Branch on Overflow Set

Clear Carry Flag
Clear Decimal Mode

Clear Interrupt Disable Bit

Clear Overflow Flag
Compare Memory and Accumulator
Compare Memory and Index X
Compare Memory and Index Y

APPENDIXL 413

JMP
JSR

LDA
LDX
LDY
LSR

NOP

ORA

PHA
PHP
PLA
PLP

ROL
ROR
RTI

RTS

SBC
SEC
SED
SEI

STA
STX

STY

DEC
DEX
DEY

Decrement Memory by One

Decrement Index X by One

Decrement Index Y by One

EOR "Exclusive-OR" Memory with Accumulator

INC

INX

INY

IncrementMemory by One

IncrementIndex X by One

IncrementIndex Y by One

Jump to New Location

Jump to New Location Saving Return Address

Load Accumulator with Memory

Load. Index X with Memory

Load Index Y with Memory

Shift One Bit Right (Memory or Accumulator)

No Operation

"OR" Memory with Accumulator

Push Accumulator on Stack

Push Processor Status on Stack

Pull Accumulator from Stack

Pull Processor Status .from Stack

Rotate One Bit Left (Memory or Accumulator)

Rotate One Bit Right (Memory or Accumulator)

Return from Interrupt

Return from Subroutine

SlJbtract Memory from Accumulator with Borrow

Set Carry Flag

Set Decimal Mode

Set InterruptDisable Status

Store Accumulator in Memory

Store Index X in Memory

Store Index Y in Memory

414 APPENDIX L

TAX

TAY
TSX

TXA

TXS

TYA

Transfer Accumulator to Index X

Transfer Accumulator to Index Y

Transfer Stack Pointer to Index X

Transfer Index X to Accumulator

Transfer Index X to Stack Register
Transfer Index Y to Accumulator

PROGRAMMING MODEL

7

I A
7

I Y

x

PCl

S

PROGRAMCOUNTER "PC"

STACK POINTER "S"

PROCESSOR STATUS REG "p"

~I LCARRY 1 = TRUE
~ZERO 1 = RESULTZERO

IRQ DISABLE 1 = -DISABLE

DECIMAL MODE 1 = TRUE

BRK COMMAND-

~ .. OVERFLOW

. NEGATIVE

1= TRUE

1 = NEG

APPENDIX L 415

0

] ACCUMULATOR A

0

I INDEX REGISTER Y

INDEX REGISTER X

~
0.

>."."m
Z
o
X
,...

S

z
VI-I
~
c:
n-I
5z
VI
m-I
Io

'V

n
o
Cm
~VI
m
><
m
n
c:
-I
5
z

INSTRUCTIONS Immediate AbsOtute Z8r Plge Accum. Implied Iind.) X (lnd.)Y Z. Page, X Abs. X Abs. Y Relative Indlrec 2, Page. Y CONDITION CODE
Mnemonic Operation OP N . OP N . OP N If OP N . OP N , OP N . OPN . OP N. . OP N . OP N . OP N It OP N . OP N . N Z C I D V

ADC A+M+C_A (4) (1) 69 2 2 60 4 3 65 3 2 61 6 2 71 5 2 75 4 2 70 4 3 79 4 3 "" " "
AND AAM-A (11 29 2 2 2D 4 3 25 3 2 21 6 2 31 5 2 35 4 2 3D 4 3 39 4 3 "" - - -
ASL C..;r::::::]}-O OE 6 306 5 2 OA 2 1 16 6 2 IE 7 3 "" "
BCC BRANCH ON C =0 (2) 90 2 2
BCS BRANCH ON C = 1 121 BO 2 2 ------
BEO BRANCH ON Z = 1 (21 FO 2 2 -
BIT AIIM 2C 4 3 24 3 2 M,,, M6
BMI BRANCH ON N = 1 (21 30 2 2 ------
BNE BRANCH ON Z = 0 (2) 10(2 2 - -
BPL BRANCH ON N = 0 (2) 10 2 2 ------
BRK ISee Fig. 1) 00 7 1 1
BVC BRANCH ON V = 0 (21 50 2 2 -
BVS BRANCH ON V =1 (2) 70 2 2 ------
CLC O...C 18 2 1 0
CLO O-D 08 2 1 - -- 0
CLI 0-1 58 2 1 ---0 -
CLV O-V B8 2 1 -----0
CMP A-M (1) C 2 2 04 3 C5 3 2 CI 6 2 01 5 2 05 4 2 DO 4 3 09 4 3 "" "
CPX X-M EO 2 2 EC 4 3 E4 3 2 .,..", V' - --
CPY Y-M CO 2 2 CC 4 3 C4 3 2 """
OEC M 1-M CE 6 3 C6 5 2 06 6 2 DE 7 3 " "
OEX X-1-X A 2 1 .,..",.- - --
OEY Y-I-Y B8 2 1 " "
EOR AVM_A (11 49 2 2 40 4 3 45 3 2 41 6 2 51 5 2 55 4 2 50 4 3 59 4 3 .",.V"- - --
INC M.1_M. EE 6 3 E6 5 2 F6 6 2 FE 7 3 .".", - - --
INX X+1_X E8 2 1 ""
INY Y+1-Y C8 2 1 ",.", - ---

JMP JUMP TO NEW LOC. 4C 3 3 6C 5 3
JSR (See Fi9. 2) JUMP SUB 20 6 3 -- - -
LOA M-A (1) A9 2 2 AD 4 3 A5 3 2 AI 6 2 BI 5 2 B5 4 2 BD 4 3 B9 4 3 ",,,,. - ---

»-
"V
"V
m
Z
o
X

~ I NOTE:COMMODORESEMICONDUCTORGROUPcannot assume liability for the use of undefined OP CODES.
'I

...
i
~m

~
m
~
o
::v
-<
::v
m
t)
c:
;;
m
~
m
Z
...VI

INSTRUCTIONS Immediate Absolute Zero Page Accum. Implied (Ind.)X (Ind.) V Z. Page. X Abs. X Abs. Y Relati,e Indlrecl Z, Page, Y CONDITION CODES
Mnemonic Operation P N . OP N II OP N " OP N . 0 P N . OP N . OP N " OP N . 0 P N . OP N . 0 P N II OP N " OP N . N Z C I D V

LDX M_X (I) A2 2 2 AE 4 3 A6 3 2 BE 4 3 B6 4 2 .- .- -
LDY M-Y (1) o 2 2 AC 4 3 A4 3 2 B4 4 2 BC 4 3 "",..".- - --
LSR OC 4E 6 3 46 5 2 4A 2 1 56 6 2 5E 7 3 o .- .-
NOP NO OPERATION EA 2 1 -
ORA AVM-A 092 2 OD 4 3 05 3 2 01 6 2 11 5 2 15 4 2 1D 4 3 19 4 3 "",.V"- --
PHA A-Ms S-I-S 48 3 1 - - -
PHP P-Ms S-I-S 08 3 1 -----
PLA S+1_S Ms-A 68 4 1 .-.-
PLP S+I-S Ms-P 28 4 1 (RESTORED)
ROL 2E 6 3 26 5 2 2A 2 1 366 2 3E 7 3 .- .- .- -
ROR , 0,.1 BE 6 3665 26A 2 1 76 6 2 7E 7 3 .-.-.- -
RTI (See Fig. 1) RTRNINT 40 6 1 (RESTORED)
RTS (See Fig. 2) RTRNSUB 60 6 1 -- -
SBC A M C-A (1) E9 2 2 ED 4 3 E5 3 2 EI 6 2 F1 5 2 F5 4 2 FD 4 3 F9 4 3 "",. "",. (3) .-
SEC 1-C 3B 2 1 1
SED I-D FB 2 1 1
SEI 1_1 78 2 1 1
STA A-M 8D 4 38532 81 6 2 91 6 2 95 4 2 9D 5 3 99 5 3
STX X-M 8E 4 38632 96 4 2-----
STY Y-M 8C 4 38432 94 4 2
TAX A-X AA 2 1 "",."",.--.-
TAY A_Y A8 2 1 .-.-
TSX S-X B 2 1 .- .-
TXA X-A 8A 2 1 """",. - - --
TXS. X-S 9A 2 1
TYA V-A 98 2 1 """..--

(I) ADO1 TO "N" IF PAGEBOUNDARYIS CROSSED. X INDEXX + ADO "'" MODIFIED
(2)ADO1TO "N"' IF BRANCHOCCURSTOSAMEPAGE. Y INDEXY - SUBTRACT - NOT MODIFIED

ADD 2 TO "N" IF BRANCH OCCURS TO DIFFERENT PAGE. A ACCUMULATOR 1\ AND M7 MEMORY BIT 7
(3) CARRY NOT = BORROW. M MEMORY PER EFFECTIVE ADORESS V OR M6 MEMORY BIT 6
(4) IF IN DECIMAL MODE Z FLAG IS INVALID Ms MEMORY PER STACK POINTER ¥ EXCLUSIVE OR N NO. CYCLES

ACCUMULATOR MUST BE CHECKED FOR ZERO RESULT. II NO. BYTES

FFFF

6510 MEMORY MAP

1
(

0200
01FF

0100
OOFF

0000

ADDRESSABLE
EXTERNAL
MEMORY

t
1

I

APPLICATIONS NOTES

STACK
01FF ..- POINTER

INITIALIZED

0001 :rUsed For
Internal

0000 110Port

Locating the Output RE'gister at the internal I/O Port in Page Zero
enhances the powerful Zero Page Addressing instructions of the 6510.

By assigning the I/O Pins as inputs (using the Data Direction Register)
the user has the ability to change the contents of address 0001 (the
Output Register) using peripheral devices. The ability to change. these
contents using peripheral inputs, together with Zero Page Indirect Ad-
dressing instructions, allows novel and versatile programming tech-
niques not possible earlier.

COMMODORE SEMICONDUCTOR GROUP reserves the right to make changes to any
products herein to improve reliability, function or design. COMMODORE SEMICON-
DUCTORGROUPdoes not assume any liability arising out of the application or use of
any product or circuit described herein; neither does it convey any license under its
patent rights nor the rights of others.

418 APPENDIX L

,," ,.

+

STACK

+

Page 1

Page 0

OUTPUT REGISTER

DATADIRECTION REGISTER

APPENDIX M

6526 COMPLEX INTERFACE ADAPTER

(CIA) CHIP SPECIFICATIONS

DESCRIPTION

The 6526 Complex Interface Adapter (CIA) is a 65XX bus compatible

peripheral interface device with extremely flexible timing and I/O

capabilities.

FEATURES

. 16 Individually programmable I/O lines

. 8 or 16-Bit handshaking on read or write

. 2 independent, linkable 16-Bit interval timers

. 24-hour (AM/PM) time of day clock with programmable alarm

. a-Bit shift register for serial I/O

. 2TTL Load capability

. CMOScompatible I/O lines

. 1 or 2 MHz operation available

APPENDIX M 419

420 APPENDIX M

PIN CONFIGURATION

Vss 1401 CNT

PAO I 21 1391 SP

PAl 131 1381 RSo

PA2 RS,

PA3 RS2

PA4 RS3

PAS 7 RES

P FH

D

PA7 9 32 DB,

PBo 1101
6526

31 DB2

PB, 1111 1301 DB3

PB2 DB4

PB3 DBS

PB4 DBa

PBs DB7

PBa <P2

PB7 FLAG

PC CS

TOD RiW

Vcc IRQ

6526
BLOCK DIAGRAM

SP

DDRA

~
CNT _ _~

TaD

FLAG

TIMERA

IRQ

CRA

R/W ji12 CS RS3 RS2 RS1 RSO RES

PAO'PA7

PC

PBO'PB7

APPENDIX M 421

MAXIMUM RATINGS

Supply Voltage, Vcc

Input/Output Voltage, V1N

Operating Temperature, Top

Storage Temperature, TSTG

-0.3V to +7.0V

-0.3V to +7.0V
00 C to 700 C

-550 C to 1500 C

All inputs contain protection circuitry to .prevent damage due to high
static discharges. Care should be exercised to prevent unnecessaryap-
plication of voltages. in excess of the allowable limits.

COMMENT

Stresses above those listed under "Absolute Maximum Ratings" may
cause permanent damage to the device. These are stress ratings only.
Functional operation of this device .at these or any other conditions
above those indicated in the operational sections of this specification is
not implied and exposure to absolute maximum .rating conditions for
extended. periods may affect device reliability.

ELECTRICALCHARACTERISTICS (Vcc j: 5%, Vss = 0 V, TA
= 0-70°C)

422 APPENDIX M

CHARACTERISTIC SYMBOL MIN. TYP. MAX. UNIT

Input High Voltage V1H +2.4 - Vcc V

Input Low Voltage V1L -0.3 - - V

Input leakage Current; IIN - 1.0 2.5 /LA
V1N=VSS+5V
(TOD, R/w, FLAG,q,2,
RES, RSO-RS3, CS)

APPENDIXM 423

CHARACTERISTIC SYMBOL MIN. TYP. MAX. UNIT

Port Input Pull-.up Resistance Rp1 3.1 5.0 - KO

Output leakage Current for ITS1 - :tl.0 :t 10.0 /LA
High Impedance State (Three
State); V1N= 4V to 2.4V;
(DBD-DB7, SP, CNT, IRQ)

Output High Voltage VOH +2.4 - Vcc V
Vcc=MIN, I.LOAD<

-200p,A (PAO-PA7, PC
PBO-PB7, DBO-DB7)

Output low Voltage VOL - - +0.40 V
Vcc= MIN, ILOAD< 3.2 mA

Output High Current (Sourcing); 10H -200 - 1000 - #LA
VOH > 2.4V (PAO-PA7,
PBO-PB7, PC, DBO-DB7

.Output low Current. (Sinking); IOL 3.2 - - mA
VOL< .4V (PAO-PA7, PC,
PBO-PB7, DBO- DB7)

Input Capacitance C1N - 7 10 pf

Output Capacitance COUT - 7 -10 pf

Power Supply Current Ice - 70 100 mA

.,.
~
.,.

»."."m
Z
C
X
~

02 INPUT

PERIPHERAL
DATA OUT

CS

RS3.RSO

RNY

DATAIN
DB7.DBO

6526 WRITE TIMING DIAGRAM

TCHW

TWCS

TDS

TADH

TRWH

TClW

02 INPUT

paRTIN

cs

RS3-ASO

AIW

DATAOUT
DB7-DBO

:10-
...
...
m
Z
C
X
~

f)
."

6526 READ TIMING DIAGRAM

TWCS

TRWS
TRWH

TADH

TACC TDR

6526 INTERFACE SIGNALS

</>2-Clock Input

The </>2clock is a TTLcompatible input used for internal device opera-
tion and as a timing reference for communicating with the system data
bus.

CS-Chip Select Input
- -

The CS input controls the activity of the 6526. A low level on CS while

</>2is high causes the devic~o respond to signals on the R/w and ad-
dress (RS) lines. A high on CS prevents these lines from controlling the
6526. The CS line is normally activated (low) at </>2by the appropriate
address combination.

R/W-Read/Write Input

The R/w signal is normally supplied by the microprocessor and con-
trols the direction of data transfers of the 6526. A high on R/w indicates
a read (data transfer out of the 6526), while a low indicates a write
(data transfer into the 6526).

RS3-RSO-Address Inputs

The address inputs select the internal registers as described by the
Register Map.

DB7-BDO-Data Bus Inputs/Outputs

The eight data bus pins transfer information between the 652~nd
the system data bus. These pins are high impedance inputs unless CS is
low and R/w and </>2are high to read the device. During this read, the
data bus output buffers are enabled, driving the data from the selected
register onto the system data bus.

IRQ-Interrupt Request Output

IRQ is an open drain output normally connected to the processor inter-
rupt input. An external pullup resistor holds the signal high, allowing

multiple IRQ outputs to be connected together. The IRQ output is nor-
mally off (high impedance) and is activated low as indicated in the
functional description.

426 APPENDIXM

RES-Reset Input

A low on the RES pin resets all internal registers. The port pins are set
as inputs and port registers to zero (although a read of the ports will
return all highs because of passive pullups). The timer control registers
are set to zero and the timer latches to all ones. All other registers are
reset to zero.

6526 TIMING CHARACTERISTICS

APPENDIXM 427

IMHz 2MHz

Symbol Characteristic MIN MAX MIN MAX Unit

4>2 Clock
Tcyc Cycle Time 1000 20,000 500 20,000 ns

TR' TF Rise and Fall Time - 25 - 25 ns

TcHw Clock Pulse Width

(High) 420 10,000 200 10,000 ns

TcLw Clock Pulse Width
(Low) 420 10,000 200 10,000 ns

Write Cycle
Tpo 'Output Delay

..£!'om 4>2
- 1000 - 500 ns

Twcs CS low
while 4>2high 420 - 200 - ns

TAOS Address Setup Time 0 - 0 - ns
TAOH Address Hold Time 10 - 5 - ns
TRws R/W Setup Time 0 - 0 - ns

TRwH R/W Hold Time 0 - 0 - ns

Tos Data Bus Setup
Time 150 - 75 - ns

TOH Data Bus Hold Time 0 - 0 - ns

Read Cycle
Tps Port Setup Time 300 - 150 - ns

Twcs(2) CS low

while 4>2high 420 - 20 - ns

TAOS Address Setup Time 0 - 0 - ns

TAOH Address Hold Time 10 - 5 - ns

I TRws

R/w Setup Time 0 - 0 - ns

TRwH R/W Hold Time 0 - 0 - ns

NOTES: I-All timings are referenced from V'L max and V'H min on inputs and VOL
max and VOHmin on outputs.

2- Twc. is measured from the later of 1/>2high or CS low. CS must be low at
least until the end of 1/>2high.

3- Tco is measured from the later of </12high or CS low.

Valid data is available only after the later of TACCor Tco.

REGISTER MAP

428 APPENDIXM

IMHz 2MHz
Symbol Characteristic MIN MAX MIN MAX Unit

TACC Data Access from
, RS3-RSO - 550 - 275 ns

Tco(3) IData Access from
CS - 320 - 150 ns

TDR Data Release Time 50 - 25 - ns

RS3 RS2 RSI RSO REG NAME

0 0 0 0 0 PRA PERIPHERALDATA REG A

0 0 0 I I PRB PERIPHERALDATA REG B

0 0 I 0 2 DDRA DATA DIRECTION REG A

0 0 I I 3 DDRB DATA DIRECTIONREG B

0 I 0 0 4 TA LO TIMERA lOW REGISTER

0 I 0 I 5 TA HI TIMERA HIGH REGISTER

0 I I 0 6 TB LO TIMER B LOW REGISTER

0 I I I 7 TB HI TIMER B HIGH REGISTER

I 0 0 0 8 TOO 10THS 10THS OF SECONDS REGISTER

I 0 0 I 9 TOO SEC SECONDS REGISTER

I 0 I 0 A TOD MIN MINUTES REGISTER

I 0 I I B TOO HR HOURS-AM/PM REGISTER

I I 0 0 C SDR SERIALDATA REGISTER

1 I 0 1 D ICR INTERRUPT CONTROL REGISTER

I I I 0 E CRA CONTROL REG A

I I I 1 F CRB CONTROL REG B

6526 FUNCTIONAL DESCRIPTION

I/O Ports (PRA, PRB, DDRA, DORB).

Ports A and B each consist of an a-bit Peripheral Data' Register (PR)
and an 8-bit Data Direction Register.(DDR). If a bit in the DDR is set to a
one, the corresponding bit in the 'PR is an output; if a DDR bit is set to a
zero,. the corresponding PR bit is defined as an input. On a READ,the PR
reflects the information present on the actual port pins (PAO-PA7,
PBO-PB7) for both input and output bits. Port A and' Port B have passive
pull-up devices as well as active pull-ups, providing both CMOS and TTL
compatibility. Both ports have two TTLload drive capability. In addition
to normal I/O operation, 1'B6 .and' PB7 also provide timer output func-
tions.

Handshaking

Handshaking on data transfers can be accomplished using the PC
output pin and the FLAGinput.pin. PC will go low for one cycle following
a read or write 'ofPORT B. This signal can be used to indicate "data
ready" at 'PORT Bor "data accepted" from PORT B. Handshaking on
16-bit data transfers (using both PORT A and PORT B) is :possible by

always reading or writing PORT A first. FLAGis~ negative edge sensi-
tive iRput which can be used for r.eceiving .the PC output from another
6526, or as.a general purpose interrupt input. :Any negative transition of
FLAGwill set the FLAGinterrupt bit.

Interval Timers (Timer A, Timer B)

Each interval timer consists of a 16-bit read-only Timer Counter and a

16-bit write-only Timer Latch. Data written to the timer are latched in the
Timer Latch, while data read from the timer are the present .contents of
the Time 'Counter. The timers can be used independently or linked for
extended operations. The various timer modes allow generation of long
time delays, variable width pulses,. pulse trains and variable 'frequency

APPENDIXM 429

REG NAME D7 Ds Ds D4 D3 D2 D, Do

0 PRA PA7 PAs PAs P PA3 PA2 PA, PAo

1 PRB PB7 PBs PBs PB4 . PB3 PB2 PB, PBo

2 DDRA DPA7 DPAs DPAs DP DPA3 DPA2 DPA, DPAo

3 DDRB DPB7' DPBs DPBs DPB4 DPB3 DPB2 DPB, DPBo

waveforms. Utilizing the CNT input, the timers can count external pulses
or measure frequency, pulse width and delay times of external signals.
Each timer has an associated control register, providing independent
control of the following functions:

Start/Stop

A control bit allows the timer to be started or stopped by the micro-
processor at any time.

PB On/Oft:

A control bit allows the timer output to appear on a PORT B output
line (PB6 for TIMERA and PB7 for TIMERB). This function overrides the
DDRB control bit and forces the appropriatePB- line to an output.

Toggle/Pulse

A control bit selects the o\Jtput applied to PORT B. On every timer
underAow the output can either toggle or generate a single positive
pulse of one-cycle duration. The Toggle output is set high whenever the
timer is started- and is set low by RES.

One-Shot/Continuous

A control bit- selects either timer mode. In one-shot mode, the timer
will count down from-the latched- value to zero, generate an interrupt,
reload the latched value, then stop. In continuous mode, the timer will
count from the latched value to zero, generate an interrupt, reload the
latched value and repeat the procedure continuously.

Force Load

A strobe bit allows the timer latch to be loaded into the timer counter

at any time, whether the timer is running or not.

Input Mode:

Control bits allow selection of the clock used to decrement the timer.

TIMERA can count q,2 clock pulses or external-pulses applied to the CNT
pin. TIMERB can count q,2 pulses, external CNT pulses, TIMERA under-

flow pulses or TIMERA underflow pulses while the CNT pin is held high.
The timer latch is loaded into the timer on any timer underAow, on a

force load or following a write to the high byte of the prescaler while the
timer is stopped. If the timer is running, a write to the high byte will load
the timer latch, but not reload the counter.

430 APPENDIXM

READ (TIMER)
REG NAME

WRITE (PRESCALER)
REG NAME

Time of Day Clock (TOO)

The TaD clock is a special purpose timer for real-time applications.
TOD consists of a 24-hour (AM/PM) clock with 1/10th second resolution. It
is organized into 4 registers: 10ths of seconds, Seconds, Minutes and
Hours. The AM/PM flag is in the MSB of the Hours register for easy bit
testing. Each register reads out in BCD format to simplify conversion for
driving displays, etc. The clock requires an external 60 Hz or 50 Hz
(programmable) TTL level input on the TaD pin for accurate time-
keeping. In addition to time-keeping, a programmable ALARM is pro-
vided for generating an interrupt at a desired time. The ALARM registers
are located a~.the same addresses as the corresponding TaD registers.
Access to the ALARM is governed by a Control Register bit. The ALARM
is write-only; any read of a TaD address will read time regardless of the
state of the ALARMaccess bit.

Aspeciflc sequence of events must be followed for proper setting and
reading of TaD. TaD is automatically stopped whenever a write to the
Hours register occurs. The clock will not start again until after a write to
the 10ths of seconds register. This assures TaD will always start at the
desired time. Since a carry from one stage to the next can occur at any
time with respect to a read operation, a latching function is included to
keep all Time Of Day information constant during a read sequence. All
four TaD registers latch on a read of Hours and remain latched until
after a read of lOths of seconds. The TaD clock continues to count when

APPENDIXM 431

4 TA La TAL7 TA TALs TA4 TAL3 TAL2 TAL1 TAlo

5 TA HI TAH7 TAH6 TAHs TAH4 TAH3 TAH2 TAH1 TAHo

6 TB La TBL7 TB TBLs TB4 TBLs TBL2 TBL1 TBlo

7 TB HI TBH7 TBH6 TBHs TBH4 TBH3 TBH2 TBH1 TBHo

4 TA La PAL7 PA PALs PA4 PAL3 PAL2 PAL1 PAlo

5 TA HI PAH7 PAH6 PAHs PAH4 PAH3 PAH2 PAH1 PAHo

6 TB La PBL7 PB PBLs PB4 PBL3 PBL2 PBL1 PBlo

7 TB HI PBH7 PBH6 PBHs PBH4 PBH3 PBH2 PBH1 PBHo

the output registers are latched. If only' one register is to be read, there
is no carry problem and the register can be read "on the fly," provided
that any read: of Hours is followed by a read of. lOths of seconds to
disable the latching.

READ
REG NAME

WRITE

CRB7=O TOO

CR~= 1 ALARM
(SAME FORMAT AS READ)

Serial Port (SDR)

The serial port is a buffered, 8-bit synchronous shift register system. A
control bit selects input or output mode. In input mode, data on the SP
pin is shifted into the shift register on the rising edge of the signal
applied to: the CNT pin. After 8 CNT pulses, the data in the shift register
is dumped into the Serial Data Register and an interrupt is generated. In
the output mode, TIMERA is used for the baud rate generator. Data is
shifted out on the SP pin at V2 the underflow rate of. TIMER A. The
maximum baud rate possible is <1>2divided by 4, but the maximum use-
able baud rate will be determined bi line loading and the speed at
which the receiver responds to input data. Transmission will start follow-
ing a write to the Serial Data Register (provided TIMERA is running and
in continuous mode). The clock signal derived from TIMERA appears as
an output on the CNT pin. The data in the Serial Data Register will be
loaded into the shift register then shift out to the SP pin when a CNT
pulse occurs. Data shifted out becomes valid on the falling edge of CNT
and remains valid until the next falling edge. After 8 CNT pulses, an
interrupt is generated to indicate more data can be sent. If the Serial
Data Register was loaded with new information prior to this interrupt,
the new data will automatically be loaded into the shift register and
transmission will continue. If the microprocessor stays one byte ahead of
the shift register, transmission will be continuous. If no further data is to
be transmitted, after the 8th CNT pulse, CNT will return high and SP will

432 APPENDIXM

8 TOO 10THS 0 0 0 0 Ta T4 T2 T,
9 TOO SEC 0 SH4 SH2 SH, Sla. SL. . SL2. SL,
A TOO MIN 0 MH4 MH2 MH, Mla ML. ML2 ML,
B TOO HR PM 0 0 HH Hla HL.. HL2 HL,

remain at the level of the last data bit transmitted. SDR data is shifted

out MSB first and serial input data should also appear in this format.
The bidirectional capability of the Serial Port and CNT clock allows

many 6526 devices to be connected to a common serial communication
bus on which one 6526 acts as a master, sourcing data and shift clock,
while all other 6526 chips act as slaves. Both CNT and SP outputs are
open drain to allow such a common bus. Protocol for master/slave
selection can be transmitted over the serial bus, or via dedicated hand-

shaking lines.

REG NAME

Interrupt Control (ICR)

There are five sources of interrupts on the 6526: underflow from TIMER
A, underflow from TIMER B, TOD ALARM, Serial Port full/empty and
FLAG. A single register provides masking and interrupt information. The
interrupt Control Register consists of a write-only MASK register and a
read-only DATA register. Any interrupt will set the corresponding bit in
the DATAregister. Any interrupt which is enabled by the MASK register
will set the IR bit (MSB) of the DATAregister alld bring the IRQ pin low.
In a multi-chip system, the IR bit can be polled to detect which chip has
generated an interrupt request. The interrupt DATA register is cleared
and the IRQ line returns high following a read of the DATA register.
Since each interrupt sets an interrupt bit regardless of the MASK, and
each interrupt bit can be selectively masked to prevent the generation of
a processor interrupt, it is possible to intermix polled interrupts with true
interrupts. However, polling the IR bit will cause the DATA register to
clear, therefore, it is up to the user to preserve the information con-
tained in the DATA register if any polled interrupts were present.

The MASK register provides convenient control of individual mask bits.
When writing to the MASK register, if bit 7 (SET/CLEAR)of the data
written is a ZERO, any mask bit written with a one will be cleared, while
those mask bits written with a zero will be unaffected. If bit 7 of the

data written is a ONE, any mask bit written with a one will be set, while
those mask bits written with a zero will be unaffected. In order for an

interrupt flag to set IR and generate an Interrupt Request, the corre-
sponding MASK bit must be set.

APPENDIX M 433

READ (INT DATA)

REG NAME

WRITE (INT MASK)

REG NAME

CONTROL REGISTERS

There are two control registers in the 6526, CRA and CRB. CRA is
associated with TIMER A and CRB is associated with TIMER B. The regis-

ter format is as follows:

434 APPENDIXM

Function

1=START TIMER A, O=STOP TIMER A. This bit is
automatically reset when underAow occurs during
one-shot mode.

1=TIMER A output appears on PB6, 0=PB6 normal
operation.
1=TOGGLE, O=PULSE
1=ONE-SHOT, O=CONTINUOUS
1=FORCE LOAD (this is a STROBEinput, there is no
data storage, bit 4 will always read back a zero
and writing a zero has no effect).
1=TIMER A counts positive CNT transitions, 0=
TIMERA counts cf>2pulses.
1=SERIAL PORT output (CNT sources shift clock),
O=SERIAL PORT input (external shift clock required).
1=50 Hz clock required on TOD pin for accurate
time, 0=60 Hz clock required on TOD pin for accu-
rate time.

CRA:

Bit Name

0 START

PBON

2 OUTMODE

3 RUNMODE

4 LOAD

5 INMODE

6 SPMODE

7 TODIN

CRB:

Bit Name Function

(Bits CRBO-CRB4 are identical to CRAO-CRA4 for

TIMER B with the exception that bit 1 controls the
output of TIMER B on PB7).

Bits CRB5 and CRB6 select one of four input modes
for TIMER Bas:
CR86 CR8S
o 0
o 1

5,6 INMODE

TIMER B counts cp2 pulses.
TIMER B counts positive CNT
transistions.
TIMER B counts TIMERA

underflow pulses.
TIMER B counts TIMERA

underflow pulses while CNT is
high.

1=writing to TOO registers sets ALARM, O=writing
to TOO registers sets TOD clock.

o

7 ALARM

T8

All unused register bits are unaffected by a write and are forced to zero
on a read.

COMMODORE SEMICONDUCTOR GROUP reserves the right to make changes to any

products herein to improve reliability, function or design. COMMODORE SEMICON-
DUCTORGROUPdoes not assume any liabilityarising out of the application or use of
any product or circuit described herein; neither does it convey any license under its
patent rights nor the rights of others.

APPENDIX M 435

TOD SP IN RUN OUT
REG NAME IN MODE MODE lOAD MODE MODE PB ON START

ICRA I 0=6OHz I O=INPUT 10=.p2 11 = FORCEI O=CONT.I O=PULSE I O=PB.OFF I O=STOP
LOAD

1=50Hzll=OUTPUTII=CNTI (STROBE)11=0.s. 11=TOGGLEll=PB.ONll=START
TA

RUN OUT
REG NAME ALARM IN MODE lOAD MODE MODE PB ON START

F CRB O=TOD 0 0-.p2 1- FORCE O=CONT. O=PULSE O=PB, OFF O-STOP
1 I=CNT LOAD
I O=-TA

1= I 1=CNT'TA (STROBE) 1=0.5. 1-TOGGLE 1-PB, ON 1=START
ALARM

APPENDIX N

6566/6567 (VIC-II) CHIP
SPECIFICATIONS

The 6566/6567 are multi-purpose color video controller devices for use

in both computer video terminals and video game applications. Both

devices contain 47 control registers which are accessed via a standard

8-bit microprocessor bus (65XX) and will access up to 16K of memory
for display information. The various operating modes and options within
each mode are described.

CHARACTER DISPLAY MODE

In the character display mode, the 6566/6567 fetches CHARACTER
POINTERsfrom the VIDEO MATRIXarea of memory and translates the
pointers to character dot location addresses in the 2048 byte CHAR-
ACTERBASEarea of memory. The video matrix is comprised of 1000
consecutive locations in memory which each contain an eight-bit char-
acter pointer. The location of the video matrix within memory is defined
by VM13- VMlOin register 24 ($18) which are used as the 4 MSB of the
video matrix address. The lower order 10 bits are provided by an inter-
nal counter (VC3- VCO) which steps through the 1000 character loca-
tions. Note that the 6566/6567 provides 14 address outputs; therefore,
additional system hardware may be required for complete system
memory decodes.

CHARACTER POINTER ADDRESS

AOO

VCO

436 APPENDIXN

The eight-bit character pointer permits up to 256 different character
definitions to be available simultaneously. Each character is an 8X 8 dot
matrix stored in the character base as eight consecutive bytes. The loca-
tion of the character base is defined by CB13-CB 11 also in register 24
($18) which are used for the 3 most significant bits (MSB) of the char-

acter base address. The 11 lower order addresses are for.med by the
8-bit character pointer from the video matrix (D7-DO) which selects a
particular"character, and a 3-bit raster counter (RC2-RCO) which selects
one of the eight character bytes. The resulting- characters are formatted
as 25 rows of 40 characters each. In addition to the 8-bit character
pointer, a 4-bit COLOR NYBBLE is associated with "each video matrix
location (the video matrix memory must be 12 bits wide) which defines
one of sixteen colors for each character.

CHARACTER DATA ADDRESS

AOO

RCO

STANDARD CHARACTER MODE (MCM = BMM = ECM = 0)

In the standard character mode, the 8 sequential bytes from the
character base are displayed directly on the 8 lines in each character
region. A "0" bit causes the background -#0 color (from register 33
($21» to be displayed while the color selected by the color nybble
(foreground)" is displayed for a "1" bit (see Color Code Table).

Background

CHARACTER
BIT

o

COLOR DISPLAYEDFUNCTION

Foreground

Background -#0 color
(register 33 ($21»
Color selected by -4-bit color nybble

Therefore, each character has a unique color determined by the 4-bit
color nybble (1 of 16) and all characters share the common background
color.

APPENDIXN 437

MULTI-COLOR CHARACTER MODE (MCM = 1, B~ = ECM
=0

Multi-color mode provides additional color flexibility allowing up to
four colors within. each character but with reduced resolution. The

multi-color mode is selected by setting the MCM bit in register 22 ($16)
to "1," .which causes the dot data stored in the character base to be
interpreted in a different manner. If the MSB of the color nybble is a
"0," the character will be displayed as described in standard character
mode, allowing the two modes to be inter-mixed (however, only the
lower order 8 colors are available). When the MSB of the color nybble is
a "1" (if MCMiMSB(CM) = 1) the character bits are interpreted in the
multi-color mode:

Since' two bits are required to specify one dot color, the character is now
displayed as a 4 X 8 matrix with each dot twice the horizontal size as in
standard mode. Note, however, that each character region can now
contain 4 different colors, two as foreground and two as background
(see MOB priority).

EXTENDEDCOLORMODE (ECM = 1, BMM = MCM = 0)

The extended color mode allows the selection of individual back-
ground colors for each character region with the normal 8 X 8 character
resolution. This mode is selected by setting the ECM bit of register 17
($11) to "1." The character dot data is displayed as in the standard
mode (foreground color determined by the color nybble is displayed for

438 APPENDIXN

CHARACTER
FUNCTION BIT PAIR COLOR DISPLAYED

Background 00. Background #0' Color
(register 33 ($21»

Background I 01 IBackground # 1 Color
(register 34 ($22»

Foreground I 10 IBackground #2 Color
(register 35 ($23»

Foreground I 11 IColor specified by 3 LSB
of color nybble

a "I" data bit), but the 2 MSB of the character pointer are used to select
the background color for each character .region as .follows:

CHAR. POINTER

MS BIT PAIR

00

01

10

11

BACKGROUND COLOR DISPLAYEDFOR0 BIT

Background #0 color (register 33 ($21»
Background #1 color: (register 34 ($22»

Background #2 color. (register 35 ($23»
Background #3 color (register 36 ($24»

Since the two MSB of the character pointers are used for color informa-
tion, only 64 different character definitions are available. The 6566/6567
will force CB10 and CB9 to "0" regardless of the original pointer values,
so that only the first 64 character definitions will be accessed. With ex-

tended color mode each character has one of sixteen individually de-
fined foreground colors and one of the four available background
colors.

NOTE: Extended color mode and multi-color mode should not be enabled

simultaneously.

BIT MAP MODE

In bit map mode, the 6566/6567 fetches data from memory in a dif-
ferent fashion, so that a one-to-one correspondence exists between
each displayed dot and a memory bit. The bit map' mode provides a
screen resolution of 320H X 200V indivic!ually controlled display dots.
Bitmap' mode is selected by setting the BMMbit in register 17 ($11) to a
"1." The VIDEO MATRIXis still-accessed as in character mode, but the
video matrix data is no longer interpreted as character pointers, but
rather as color data. The VIDEO MATRIX COUNTERis then also used as

an address to fetch the dot data for display from the 8000-byte DISPLAY
BASE. The display base address is formed as follows:

AOO

RCO

APPENDIXN 439

VCx denotes the video matrix counter outputs, RCx denotes the 3-bit
raster line counter and CB13 is from register 24 ($18). The video matrix
counter steps through the same 40 locations for eight raster lines, con-
tinuing to the next 40 locations every eighth line, while the raster counter
increments once for each horizontal video line (raster line). This address-
ing results in ,each eight sequential memory locations being formatted as
an 8 X 8 dot block on the'video display.

STANDARD BIT MAP MODE (BMM =1, MCM = 0)

When standard bit map mode is in use, the color information is de-
rived only from the data stored in the video matrix (the color nybble is
disregarded). The 8 bits are divided into two 4-bit nybbles which allow
two colors to ,be independently selected in each 8 X 8 dot block. When
a bit in the display memory is a "0" the color of the output dot is set by
the least significant (lower) nybble (LSN). Similarly, a,display'memory bit
of "1" selects the output color determined by the MSN (upper nybble).

BIT

o
1

DISPLAY COLOR

Lower nybble of v.ideo matrix pointer
Upper nybble of video matrix pointer

MULTI-COLOR BIT MAP MODE (BMM = MCM = 1)

Multi-colored bit map mode is selected by setting the MCM bit in
register 22 ($1-6) to a "1" in conjunction with the BMM bit. Multi-color
mode uses the same memory access sequences as standard bit map
mode, but interprets the dot data as follows:

BIT PAIR

00
01

10

11

DISPLAYCOLOR

Background #0 color (register 33 ($21»
Upper nybble' of video m'atrix pointer
Lower nybble of video matrix pointer
Video matrix color nybble

Note that the color nybble (DB 11- DB8) IS used for the multi-color bit
map mode. Again, as two bits are used to select one dot color, the

440 APPENDIX N

horizontal dot size is doubled, resulting in a screen resolution of 160H X

200V. Utilizing multi-color bit map mode, three independently selected
colors can be displayed in each 8 X 8 block in addition to the back-

ground color.

MOVABLE OBJECT BLOCKS

The movable object block (MOB) is a special type of character which
can be displayed at anyone position on the screen without the block
-constraints inherent in character and bit map mode. Up to 8 unique
MOBs can be displayed simultaneously, each defined by 63 bytes in
memory which are displayed as a 24X21 dot array (shown below). A
number of special features make MOBs especially suited for video
graphics and game applications.

MOB DISPLAY BLOCK

ENABLE

Each MOB can be selectively enabled for display by setting its corre-
sponding enable bit (MnE)to '']'' in register 21 ($15). If the MnEbit is
"0," no MOB operations will occur involving the disabled MOB.

POSITION

Each MOB is positioned via its X and Y position register (see register
map) with a resolution of 512 horizontal and 256 vertical positions. The

APPENDIXN 441

BYTE BYTE BYTE

00 01 02
03 04 05

57 58 59
60 61 62

position of a MOB is determined by the upper-left corner of the array. X
locations 23 to 347 ($17-$157) and Y locations 50 to 249 ($32-$F9) are
visible. Since not all available MOB positions are entirely visible on the
screen, MOBs may be moved smoothly on and off the display screen.

COLOR

Each MOB has a separate 4-bit register to determine the MOB color.
The two MOB color modes are:

STANDARDMOB (MnMC = 0)

In the standard mode, a "0" bit of MOB data allows any background
data to show through (transparent) and a "1" bit is displayed as the
MOB color determined by the corresponding MOB Color register.

MULTI-COLOR MOB (MnMC = 1)

Each MOB can be individually selected as a multi-color MOB via
MnMC bits in the MOB Multi-color register 28 ($1C). When the MnMC bit
is "1," the corresponding MOB is displayed in the multi-color mode. In
the multi-color mode, the MOB data is interpreted in pairs (similar to the
other multi-color modes) as follows:

BIT PAIRI COLOR DISPLAYED

00 Transparent
01 MOB Multi-color #0 (register 37 ($25»
10 MOB Color (registers 39-46 ($27-$2E»
11 MOB Multi-color #1 (register 38 ($26»

Since two bits of data are required for each color, the resolution of the
MOB is reduced to 12X21, with each horizontal dot expanded to twice
stcmdard size so that the overall MOB size does not change. Note that
up to 3 colors can be displayed in each MOB (in addition to transparent)
but that two of the colors are shared among all the MOBs in the multi-
color mode.

442 APPENDIX N

MAGNIFICATION

Each MOB can be selectively expanded (2X) in both the horizontal
and vertical directions. Two registers contain the control bits
(MnXE,MnYE) for the magnification control:

REGISTER FUNCTION

23 ($17)
/

Horizontal expand MnXE-"1"=expand; "O"=normal
29 ($1D) Vertical expand MnYE-'T'=expand; "0"= normal

When MOBs are expanded, no increase in resolution is realized. The

same 24X21 array (12X21 if multi-colored) is displayed, but the overall
MOB dimension is doubled in the desired direction (the smallest MOB
dot may be up to 4X standard dot dimension if a MOB is both multi-
colored and expanded).

PRIORITY

The priority of each MOB may be individually controlled with respect
to the other displayed information from character or bit map modes.
The priority of each MOB is set by the corresponding bit (MnDP) of regis-
ter 27 ($1B) as follows:

REG BITI PRIORITY TO CHARACTER OR BIT MAP DATA

o
I

Non-transparent MOBdata will be displayed (MOBin front)
1 Non-transparent MOB data will be displayed only instead of

Bkgd #0 or multi-color bit pair 01 (MOB behind)

MOB-DISPLAY DATA' PRIORITY

APPENDIXN 443

MnDP = 1 MnDP = 0

MOBn Foreground
Foreground MOBn

Background Background

MOB data bits of "0" ("00" in multi-color mode) are transparent, always
permitting any other information to be displayed.

The MOBs have a fixed priority with respect to each other, with MOB
o having the highest priority and MOB 7 the lowest. When MOB data
(except transparent data) of two MOBs are coincident, the data from
the lower number MOB will be displayed. MOB vs. MOB data is
prioritized before priority resolution with character or bit map data.

COLLISION DETECTION

Two types of MOB collision (coincidence) are detected, MOB to MOB
collision and MOB to display data collision:

1) A collision between two MOBs occurs when non-transparent output
data of two MOBs are coincident. Coincidence of MOB transparent
areas will not generate a collision. When a collision occurs, the
MOB bits (MnM) in the MOB-MOB COLLISIONregister 30 ($1E)will
be set to "1" for both colliding MOBs. As a collision between two
(or more) MOBs occurs, the MOB-MOB collision bit for each col-
lided MOB will be set. The collision bits remain set until a read of

the collision register, when all bits are automatically cleared.
MOBs collisions are detected even if positioned off-screen.

2) The second type of collision is a MOB-DATA collision between a
MOB and foreground display data from the character or bit map
modes. The MOB-DATA COLLISION register 31 ($1F) has a bit
(MnD) for each MOB which is set to "1" when both the MOB and
non-background display data are coincident. Again, the coinci-
dence of only transparent data does not generate a collision. For
special applications, the display data from the 0- 1 multicolor bit
pair also does not cause a collision. This feature permits their use
as background display data without interfering with true MOB col-
lisions. A MOB-DATA collision can occur off-screen in the horizon-

tal direction if actual display data has been scrolled to an off-
screen position (see scrolling). The MOB-DATA COLLISION register
also automatically clears when read.

444 APPENDIXN

The collision interrupt latches are set whenever the first bit of either

register is set to "1." Once any collision bit within a register is set high,
subsequent collisions will, not set the interrupt latch until that collision
register has been cleared to all "Os" by a read.

MOB MEMORY ACCESS

The,data for each MOBis stored in 63 consecutive bytes of memory.
Each block of MOB data is defined by a MOB pointer, located at the
end of the VIDEO MATRIX.Only 1000 bytes of the video matrix are used
in the normal display modes, allowing the video matrix locations
1016-1023 (VM base+$3F8 to VM base+$3FF) to be used for MOB
pointers 0-7, respectively. The eight-bit MOB pointer from the video
matrix together with the six bits from the MOB, byte counter (to address
63 bytes) define' the entire 14- bit address field:

Where MPx are the MOB pointer bits from the video matrix and MCx are
the internally generated MOB counter bits. The MOB pointers are read
from the video matrix at the end of every raster line. When the Y posi-
tion register of a MOB matches the current raster line count, the actual
fetches of MOB data' begin. Internal counters automatically step through
the 63 bytes of MOB data, displaying three bytes on each raster line.

OTHER FEATURES

SCREEN BLANKING

The display screen may be blanked by setting the DEN bit in register
17 ($11) to a "0." When the screen is blanked, the entire screen will be
fliled with the exterior color as set in register 32 ($20). When blanking is

active, only transparent (Phase 1) memory accesses are required, per-
mitting full processor utilization of the system bus. MOB data, however,
will be accessed if the MOBs are not also disabled. The DEN bit must be

set to "1" for normal video display.

APPENDIX N 445

A13 A12 All A10 A09 AOa A07 A06' A05 A04 A03 A02 AOl AOO

MP7 MP6 MP5 MP4 MP3 MP2 MPl MPO MC5 MC4 MC3 MC2 MCI MCO

ROW/COLUMN SELECT

The normal display consists of 25 rows of 40 characters (or character

regions) per row. For special display purposes, the display window may
be reduced to 24 rows and 38 characters. There is no change in the
format of the displayed information, except that characters (bits) adja-
cent to the exterior border area will now be covered by the border. The
select bits operate as follows:

RSEl NUMBER OF ROWS CSEl NUMBER OF COLUMNS

o
1

24 rows
25 rows

o
1

38 columns
40 columns

The RSELbit is in register 17 ($11) and the CSELbit is in register 22 ($16).
For standard display the larger display window is normally used, while
the smaller display window is normally used in conjunction with scrolling.

SCROLLING

The display data may. be scrolled up to one entire character space in

both the horizontal and vertical direction. When used in conjunction with
the smaller display window (above), scrolling can be used to create a

smooth panning motion of display data while updating the system

memory only when a new character row (or column) is required. Scroll-

ing is also used to center a fixed display within the display window.

BITS

X2,Xl,XO

Y2,Yl,YO

REGISTER

22 ($16)
17 ($11)

FUNCTION

Horizontal Position

Vertical Position

LIGHT PEN

The light pen input latches the current screen position into a pair of
registers (LPX,LPY)on a low-going edge. The X position register 19 ($13)
will contain the 8 MSB of the X position at the time of transition. Since
the X position is defined by a 512-state counter (9 bits) resolution to 2

horizontal dots is provided. Similarly, the Y position is latched to its reg-

446 APPENDIXN

ister 20 ($14) but here 8 bits provide single raster resolution within the

visible display. The light pen latch may be triggered only once per
frame, and subsequent triggers within the same frame will have no

effect. Therefore, you must take several samples before turning the light
pen to the screen (3 or more samples, average), depending upon the
characteristics of your light pen.

RASTER REGISTER

The rasfer register is a dual-function register. A read of the raster

register 18 ($12) returns the lower 8 bits of the current raster position
(the MSB- RC8 is located in register 17 ($11). The raster register can be
interrogated to implement display changes outside the visible area to

prevent display flicker. The visible display window is from raster 51

through raster 251 o($033-$OFB). A write to the raster bits (including
RC8) is latched for use in an internal raster compare. When the current

raster matches the written value, the raster interrupt latch is set.

INTERRUPT REGISTER

The interrupt register shows the status of the four sources of interrupt.
An interrupt latch in register 25 ($19) is set to "1" when an interrupt
source has generated an interrupt request. The four sources of interrupt
are:

LATCH
I

ENABLE
BIT BIT WHEN SET

IRST
1MDC
IMMC
ILP
IRQ

ERST
EMDC
EMMC
ELP

Set when (raster count) = (stored raster count)

Set by MOB-DATA collision register (first collision only)
Set by MOB-MOB collision register (first collision only)
Set by negative transition of LP input (once per frame)
Set high by latch set and enabled (invertof IRQ/ output)

To enable an interrupt request to set the IRQ/ output to "0," the corre-
sponding interrupt enable bit in register 26 ($1A) must be set to "1."

Once an interrupt latch has been set, the latch may be cleared only by
writing a "1" to the desired latch in the interrupt register. This feature
allows selective handling of video interrupts without software required to
"remember" active interrupts.

APPENDIXN 447

DYNAMIC RAM REFRESH

A dynamic ram refresh controller is built in to the 6566/6567 devices.
Five 8-bit row addresses are refreshed every raster line. This rate
guarantees a maximum delay of 2.02 ms between the refresh of any
single row address in a 128 refresh scheme. (The maximum delay is
3.66 ms in a 256 address refresh scheme.) This refresh is totally trans-
parent to the system, since the refresh occurs during Phase 1 of the
system clock. The 6567 generates both RAS/ and CASt which are nor-
mallyconnected directly to the dynamic rams. RAS/ and CASt are gen-
erated for every Phase 2 and every video data access (including refresh)
so that external clock generation .is not required.

THEORY OF OPERATION

SYSTEM INTERFACE

The 6566/6567 video controller devices interact with the system data
bus in a special way. A 65XX system requires the system buses only
during the .Phase 2 (clock high) portion of the cycle. The 6566/6567 de-
vices take advantage of this. feature by normally accessing system
memory during the Phase 1 (clock low) portion of the clock cycle. There-
fore, operations such as character data fetches and memory refresh -are
totally transparent to the processor and do not reduce the processor
throughput. The video chips provide the interface control signals re-
quired to maintain this bus sharing.

The video devices provide the signal AEC (address enable control)
which is used to disable the processor address bus drivers allowing the
video device to access the address bus. AEC is active low which permits
direct connection to the AEC input of the 65XX.family. The AEC signal is

448 APPENDIX N

normally activated during Phase I so that processor operation is not
affected. Because of this bus "sharing," all memory accesses must be
completed in 1/2 cycle. Since the video chips provide a I-MHz clock
(which must be used as system Phase 2), a memory cycle is 500 ns
including address setup, data access and, data setup to the reading
device.

Certain operations of the 6566/6567 require data at a faster rate than
available by reading only during the Phase I time; specifically, the ac-
cess of character pointers from the video matrix and the fetch of MOB
data. Therefore, the processor must be disabled and the data accessed
during the "Phase 2 clock. This is accomplished via the BA (bus available)
signal. The BA line is normally high but is brought low during Phase I to
indicate that the video chip will require a Phase 2 data access. Three
Phase-2 times are allowed after BA low for the processor to complete
any current memory accesses. On the fourth Phase 2 after BA low, the
AEC signal will remain low during Phase 2 as the video chip fetches
data. The BA line is normally connected to the RDY input of a 65XX
processor. The character pointer fetches occur every eighth raster line
during the display window and require 40 consecutive Phase 2 accesses
to fetch the video matrix pointers. The MOB data fetches require 4
memory accesses as follows:

PHASEI DATA CONDITION

1 MOB Pointer

2 MOB Byte I
I MOB Byte 2
2 MOB Byte 3

Every raster
Each raster while MOB is displayed
Each raster while MOB is displayed
Each raster while MOB is displayed

The MOB pointers are fetched every other Phase 1 at the end of each
raster line. As required, the additional cycles are used for MOB data
fetches. Again, all necessary bus control is provided by the 6566/6567
devices.

MEMORY INTERFACE

The two versions of the video interface chip, 6566 and 6567, differ in
address output configurations. The 6566 has thirteen fully decoded ad-

APPENDIXN 449

dresses for direct connection to the system address bus. The 6567 has

multiplexed addresses for direct connection to 64K dynamic RAMs. The
least significant address bits, A06-AOO, are present on A06-AOO while
RAS/ is brought low, while the most significant bits, A13-A08, are pres-
ent on A05-AOO while CAS/ is brought low. The pins All-A07 on the
6567 are static address outputs to allow direct connection of these bits
to a conventional 16K (2Kx8) ROM. (The lower order addresses require
external latching.)

PROCESSOR INTERFACE

Aside from the special memory accesses described above, the 6566/
6567 registers can be accessed similar to any other peripheral device.
The following processor interface signals are provided:

DATA BUS (DB7-DBO)

The eight data bus pins are the bi-directional data port, controlled by
CS/, RW, and Phase O. The data bus can only be accessed while AEC
and Phase 0 are high and CS/ is low.

CHIP SELECT (CS/)

The chip select pin, CS/, is brought low to enable access to the device
registers in conjunction with the address and RW pins. CS/ low is recog-
nized only while AEC and Phase 0 are high.

READ/WRITE (R/W)

The read/write input, R/w, is used to determine the direction of data
transfer on the data bus, in conjunction with CS/. When R/w is high ("1")
data is transferred from the selected register to the data bus output.
When R/W is low ("0") data presented on the data bus pins is loaded
into the selected register.

ADDRESS BUS (A05-AOO)

The lower six address pins, A5-AO, are bi-directional. During a pro-
cessor read or write of the video device, these address pins are inputs.
The data on the address inputs selects the register for read or write as
defined in the register map.

450 APPENDIXN

CLOCK OUT (PHO)

The clock output, Phase 0, is the 1-MHz clock used as the 65XX pro-
cessor Phase 0 in. All system bus activity is referenced to this clock. The

clock frequency is generated by dividing the 8-MHz video input clock by
eight.

INTERRUPTS (IRQ/)

The interrupt output, IRQ/, is brought low when an enabled source of

interrupt occurs within the device. The IRQ/ output is open drain, requir-
ing an external pull-up resistor.

VIDEO INTERFACE

The video output signal from the 6566/6567 consists of two signals

which must be externally mixed together. SYNC/LUM output contains all
the video data, including horizontal and vertical syncs, as well as the

luminance information of the video display. SYNC/LUM is open drain,

requiring an external pull-up of 500 ohms. The COLOR output contains
all the chrominance information, including the color reference burst and

the color of all display data. The COLOR output is open source and

should be terminated with 1000 ohms to ground. After appropriate mix-
ing of these two signals, the resulting signal can directly drive a video
monitor or be fed to a modulator for use with a standard television.

SUMMARY OF 6566/6567 BUS ACTIVITY

APPENDIXN 451

AEC PHO CS/ R/w ACTION

0 0 X X PHASE 1 FETCH, REFRESH
0 1 X X PHASE 2 FETCH (PROCESSOR OFF)
1 0 X X NO ACTION
1 1 0 0 WRITE TO SELECTEDREGISTER
1 1 0 1 READ FROM SELECTEDREGISTER
1 1 1 X NO ACTION

PIN CONFIGURATION
'-../ 6 VccD 111

DBS DB7

DB4 DBa

D DBg

DB2 DB,o

DB, DB"

DBo A10

IRQI Ag

lP 1 9 1 1321 Aa

CSI 1101 6567 A7

RIW 1111 30 A6 ("1")

SA ,.
VDD 13 28 A4(A,2)

COLOR 14 27 A3(A 11)

S/lUM 115' . 261 A2(A1O)

AEC 116' . 251 A,(Ag)

PHo Ao(Aa)

RASI A11

CASI PHIN

Vss PHCl

(Multiplexed addresses in parentheses)

452 APPENDIX N

APPENDIX N 453

PIN CONFIGURATION

DBa Vcc

DB5 DB7

DB4 DBa

DB3 DBg

DB2 DB10

.DBI DB11

DBo A13

IRQI A12

LP I 91 1321 All

CSI 110'
6566

1311 A10

RIW 1 11 . 1301 Ag

OA§

VDD 13. 28 A7.

COLOR 14 27 As

S/LUM As

AEC A4

PHo A3

PHIN A2

PHCOl AI

Vss Ao

REGISTER MAP
""
VI
""

:I>
...
...
m
Z
o
X
z

ADDRESS DB7 DB6 DB5 DB4 DB3 DB2 DBl DBO DESCRIPTION

00 ($00) MOX7 MOX6 MOX5 MOX4 MOX3 MOX2 MOXl MOXO MOB 0 X-position
01 ($01) MOY7 MOY6 MOY5 MOY4 MOY3 MOY2 MOYl MOYO MOB 0 V-position
02 ($02) M1X7 M1X6 M1X5 M1X4 M1X3 M1X2 M1Xl MIXO MOB 1 X-position
03 ($03) M1Y7 M1Y6 M1Y5 M1Y4 M1Y3 M1Y2 M1Yl MIYO MOB 1 V-position
04 ($04) M2X7 M2X6 M2X5 M2X4 M2X3 M2X2 M2Xl M2XO MOB 2 X-position
05 ($05) M2Y7 M2Y6 M2Y5 M2Y4 M2Y3 M2Y2 M2Yl M2YO MOB 2 Y-position
06 ($06) M3X7 M3X6 M3X5 M3X4 M3X3 M3X2 M3Xl M3XO MOB 3 X-position
07 ($07) M3Y7 M3Y6 M3Y5 M3Y4 M3Y3 M3Y2 M3Yl M3YO MOB 3 V-position
08 ($08) M4X7 M4X6 M4X5 M4X4 M4X3 M4X2 M4Xl M4XO MOB 4 X-position
09 ($09) M4Y7 M4Y6 M4Y5 M4Y4 M4Y3 M4Y2 M4Yl M4YO MOB 4 V-position
10 ($OA) M5X7 M5X6 M5X5 M5X4 M5X3 M5X2 M5Xl M5XO MOB 5 X-position
11 ($OB) M5Y7 M5Y6 M5Y5 M5Y4 M5Y3 M5Y2 M5Yl M5YO MOB 5 V-position
12 ($OC) M6X7 M6X6 M6X5 M6X4 M6X3 M6X2 M6Xl M6XO MOB 6 X-position
13 ($OD) M6Y7 M6Y6 M6Y5 M6Y4 M6Y3 M6Y2 M6Yl M6YO MOB 6 V-position
14 ($OE) M7X7 M7X6 M7X5 M7X4 M7X3 M7X2 M7Xl M7XO MOB 7 X-position
15 ($OF) M7Y7 M7Y6 M7Y5 M7Y4 M7Y3 M7Y2 M7Yl M6YO MOB 7 V-position
16 ($10) M7X8 M6X8 M5X8 M4X8 M3X8 M2X8 M1X8 MOX8 MSB of X-position
17 ($11) RC8 ECM BMM DEN RSEL Y2 Yl YO See text
18 ($12) RC7 RC6 RC5 RC4 RC3 RC2 RCl RCO Raster register
19 ($13) LPX8 LPX7 LPX6 LPX5 LPX4 LPX3 LPX2 LPXl Light Pen X
20 ($14) LPY7 LPY6 LPY5 LPY4 LPY3 LPY2 LPYl LPYO Light Pen Y
21 ($15) M7E M6E M5E M4E M3E M2E M1E MOE MOB Enable
22 ($16) - - RES MCM CSEL X2 Xl XO See text
23 ($17) M7YE M6YE M5YE M4YE M3YE M2YE M1YE MOYE MOB V-expand

24 ($18) VM13 VM12 VMll VM10 CB13 CB12 CBll - Memory Pointers
25 ($19) IRQ - - - ILP IMMC IMBC IRST Interrupt Register
26 ($lA) - - - - ELP EMMC EMBC ERST Enable Interrupt
27 ($1 B) M7DP M6DP M5DP M4DP M3DP M2DP M1DP MODP MOB-DATA Priority
28 ($1C) M7MC M6MC M5MC M4MC M3MC M2MC M1MC MOMC MOB Multicolor Sel
29 ($1 D) M7XE M6XE M5XE M4XE M3XE M2XE MIXE MOXE MOB X-expand
30 ($1 E) M7M M6M M5M M4M M3M M2M MIM MOM MOB-MOB Collision
31 ($1 F) M7D M6D M5D M4D M3D M2D MID MOD MOB-DATA Collision
32 ($20) - - - - EC3 EC2 ECl ECO Exterior Color
33 ($21) - - - - BOC3 BOC2 BOCI BOCO Bkgd #0 Color
34 ($22) - - - - B1C3 BIC2 B1Cl B1CO Bkgd # I Color
35 ($23) - - - - B2C3 B2C2 B2C1 B2CO Bkgd #2 Color
36 ($24) - - - - B3C3 B3C2 B3C1 B3CO Bkgd #3 Color
37 ($25) - - - - MM03 MM02 MM01 MMOO MOB Multicolor#0
38 ($26) - - - - MMI3 MM12 MM11 MM10 MOB Multicolor # 1
39 ($27) - - - - MOC3 MOC2 MOCI MOCO MOB 0 Color
40 ($28) - - - - M1C3 M1C2 M1C1 M1CO MOB 1 Color
41 ($29) - - - - M2C3 M2C2 M2C1 M2CO MOB 2 Color
42 ($2A) - - - - M3C3 M3C2 M3C1 M3CO MOB 3 Color

> 43 ($2B) - - - - M4C3 M4C2 M4C1 M4CO MOB 4 Color...... 44 ($2C) - - - - M5C3 M5C2 M5C1 M5CO MOB 5 Colorm
z
0 45 ($2D) - - - - M6C3 M6C2 M6C1 M6CO MOB 6 Colorx
z 46 ($2E) - - - - M7C3 M7C2 M7C1 M7CO MOB 7 Color

I NOTE: A dash indicates a no connect. All no connects are read as a "1."IIIIII

COLOR CODES

\

456 APPENDIXN

D4 D3 D1 DO HEX DEC COLOR

0 0 0 0 0 0 BLACK
0 0 0 1 1 1 WHITE
0 0 1 0 2 2 RED

0 0 1 1 3 3 CYAN

0 1 0 0 4 4 PURPLE

0 1 0 1 5 5 GREEN

0 1 1 0 6 6 BLUE

0 1 1 1 7 7 YELLOW
1 0 0 0 8 8 ORANGE

1 0 0 1 9 9 BROWN

1 0 1 0 A 10 LT RED

1 0 1 1 B 11 DARK GREY
1 1 0 0 C 12 MED GREY

1 1 0 1 D 13 LT GREEN

1 1 1 0 E" 14 LT BLUE

1 1 1 1 F 15 LT GREY

APPENDIX0

6581 SOUND INTERFACE DEVICE (SID)
CHIP SPECIFICATIONS

CONCEPT

The 6581 Sound Interface Device (SID) is a single-chip, 3-voice elec-

tronic music synthesizer/sound effects generator compatible with the

65XX and similar microprocessor families. SID provides wide-range,
high-resolution control of pitch (frequency), tone color (harmonic con-
tent), and dynamics (volume). Specialized control circuitry minimizes

software overhead, facilitating use in arcade/home video games and
low-cost musical instruments.

FEATURES

. 3 TONE OSCilLATORS

Range: 0-4 kHz
. 4 WAVEFORMS PER OSCilLATOR

Triangle, Sawtooth,
Variable Pulse, Noise

. 3 AMPLITUDE MODULATORS

Range: 48 dB
. 3 ENVELOPE GENERATORS

Exponential response
Attack Rate: 2 ms-8 s

Decay Rate: 6 ms-24 s

Sustain level: O-peak volume
Release Rate: 6 ms-24 s

. OSCILLATOR SYNCHRONIZATION

. RING MODULATION

APPENDIX 0 457

. PROGRAMMABLE FILTER

Cutoff range: 30 Hz- 12 kHz
12 dB/octave Rolloff

Low pass, Bandpass,
High pass, Notch outputs
Variable Resonance

. MASTER VOLUME CONTROL

. 2 AID POT INTERFACES

. RANDOM NUMBER/MODULATION GENERATOR

. EXTERNALAUDIO INPUT

458 APPENDIX 0

PIN CONFIGURATION

CAP'A VDD

CAP'B AUDIO OUT

CAP2A EXTIN

CAP2B Vcc

RES POTX

<1>2 POTY

Rm 6581 1221 D7
SID

CS I 81 bd D6

Ao Ds

A, D4

A2 D3

A3 D2

A4 D,

GND Do

RES
0
a:

RiW z
FILT10

CS 0 c'"
AO '"w
A, 0

0
A2 <

...
A3 :

E '''m

0
CAP2AA4 FILTER-- CAP'B

......,...., CAP'AFILT2
n.n.. c
NOISE

D03 ffi I I

AAR

I I I LP

D, BP
D2 HP

D3

M
--
......,....,

I VOLUME 1-1 AUDIO OUTMODULATDRI----a"'" FILT3 1 I
n.n..
NOISE

AAR

I H 'mvr I
>

GENERATOR 3 . I I , EXT IN."."m
Z
C
X
0

6581 BLOCK DIAGRAM
.,. POT y -t POTS ...-- POTXIII
00

DESCRIPTION

The 6581 consists of three synthesizer "voices" which can be used

independently or in conjunction with each other (or external audio
sources) to create complex sounds. Each voice consists of a Tone

Oscillator/Waveform Generator, an Envelope Generator and an
Amplitude Modulator. The Tone Oscillator controls the pitch of the voice

over a wide range. The Oscillator produces four waveforms at the

selected frequency, with the unique harmonic content of each waveform
providing simple control of tone color. The volume dynamics of the oscil-
lator are controlled by the Amplitude Modulator under the direction of

the Envelope Generator. When triggered, the Envelope Generator
creates an amplitude envelope with programmable rates of increasing

and decreasing volume. In addition to the three voices, a programm-
able Filter is provided for generating complex, dynamic tone colors via
subtractive synthesis.

SID allows the microprocessor to read the changing output of the third

Oscillator and third Envelope Generator. These outputs can be used as a
source of modulation information for creating vibrato, frequency/filter

sweeps and similar effects. The third oscillator can also act as a random
number generator for games. Two AID converters are provided for inter-
facing SID with potentiometers. These can be used for "paddles" in a

game environment or as front panel controls in a music synthesizer. SID
can process external audio signals, allowing multiple SID chips to be

daisy-chained or mixed in complex polyphonic;: systems.

SID CONTROL REGISTERS

There are 29 eight-bit registers in SID which control the generation of
sound. These registers are either WRITE-only or READ-only and are listed
below in Table 1.

460 APPENDIX0

0, D.
DATA

D, 0, O2 0,0, 0"
ADDRESS REG#

A, A, A, A, A. jHEX)

0 . 0 0 0 CO

0 . 0 0 1 01

0 0 0 1 0 02

0 0 0 1 1 03

0 0 1 0 0 O.

0 0 1 0 1 05
0 0 1 1 0 06

7 0 0 1 1 1 Oi

e 0 1 0 0 0 08

9 0 1 0 0 1 09
\

10 0 1 0 1 0 OA

11 0 1 0 1 1 OB

12 0 1 1 0 0 OC

13 0 1 1 0 1 00

1. 0 1 1 1 0 OE

15 0 1 1 1 1 OF

16 1 0 0 0 0 10

17 1 0 0 0 1 11

16 1 0 0 1 0 12

19 1 0 0 1 1 13 \
20 1 0 1 0 0 l'

21 1 0 1 0 1 15

). 22 1 0 1 1 0 16
"V
"V 23 1 0 1 1 1 17m
Z 2. 1 1 0 0 0 '8
0
X

25 1 0 0 19
0

1 1

26 1 1 0 1 0 IA

27 1 1 0 1 1 1B

.,. 28 1 1 1 0 0 1C

F, F. _F, F, F3 F2 F, F.
F" F14 F'3 F12 F" F,. Fg Fa
Pi'll, Pi'll. Pi'll, Pi'll, PW3 PW2 PW, Pi'll.
- - - - PW" PW,o PWg PWa

NOISE rLIl.. ...-'V1 /'v"- TEST ::: SYNC GATE

ATK3 ATK2 ATK, ATK. DCY3 DCY2 DCY, DCY.
STN3 STN2 STN, STN. RLS3 RLS2 RLS, RLSo

F, F. F, F, F3 F2 F, Fo
F" F" F13 F'2 F" F'0 Fg Fa
Pi'll, Pi'll. Pi'll, Pi'll, PW3 PW2 Pi'll, pw.

PW" PW,o PWg PWa
NOISE I1..fL ...-'V1 /'v"- TEST .'m SYNC GATE
ATK3 ATK2 ATK, ATKa DCY, DCY2 DCY, DCYo
STN3 STN2 STN, STN. RLS3 RLS2 RLS, RLS.

F, F. F, F, F, F2 F, F.
F" F" F13 F'2 F" F,. Fg F8
Pi'll, pw. Pi'll, PW, PW3 PW2 Pi'll, Pi'll.

PW,1 !'W,. PWg PWa
NOISE rtI1. ...-'V1 AA TEST ;:; SYNC GATE
ATK3 ATK2 ATK, ATK. DCI', DCY. DCY, DCYO
STN3 STN2 STN, STN. RLS, RLS2 RLS, RLSo

- - - - FC2 FC, FC.
FC'0 FCg FCe FC, FC. FC, FC. FC3
RES3 RES2 RES, RESo FILTEX FILT 3 FILT 2 FILT 1
30FF HP BP LP VOL3 VOL2 VOL, VOLo

PX, PX. PX, PX, PX3 PX2 PX, PX.
PY, PY. PY, PY, PY3 PY2 PY, PYa
0, O. 0, 0, 03 02 0, O.
E, E. E, E, E3 E2 E, Eo

REG NAME REG
Voice 1 TYPE

FREO LO WRITE-ONLY
FREO HI WRITE-ONLY

PWLO WRITE-ONLY

Pi'll HI WRITE-ONLY

CONTROL REG WRITE-ONLY

ATTACK/DECAY WRITE-ONLY

SUSTAIN/RELEASE WRITE-ONLY

Voice 2

FREO LO WRITE-ONLY c'FREO HI WRITE-ONLY cr
PWLO WRITE-ONLY ii"
Pi'll HI WRITE-ONLY

CONTROL REG WRITE-ONLY

ATTACK/DECAY WRITE-ONLY 1/1

SUSTAIN/RELEASE WRITE-ONLY 6
Voice 3 :IIJ
FREO La WRITE-ONLY

(Q
FREO HI WRITE-ONLY iii'
PWLO WRITE-ONLY ..
PWHI WRITE-ONLY

CONTROL REG WRITE-ONLY

ATTACK/DECAY WRITE-ONLY D

SUSTAIN/RELEASE WRITE-ONLY
'V

Filter

FC LO WRITE-ONLY

FC HI WRITE-ONLY

RES/FIL T WRITE-ONLY

MODENOL WRITE.ONL Y

Misc.

POT X READ-ONLY

POTY READ-ONLY

OSC3/RANDOM READ-ONLY

ENV, READ-ONLY

SID REGISTER DESCRIPTION

VOICE 1

FREQLO/FREQHI (Registers 00,01)

Together these registers form a l6-bit number which linearly controls
the frequency of Oscillator 1. The frequency is determined by the follow-
ing equation:

Fout = (FnX Fc1k/167772l6) Hz

Where Fn is the l6-bit" number in the Frequency registers and FClkis the
system clock applied to the cp2 input (pin 6). For a standard 1.0-MHz
clock, the frequency is given by:

Fout = (Fn X 0.059604645) Hz

A complete table of values for generating 8 octaves of the equally
tempered musical scale with concert A (440 Hz) tuning is provided in
Appendix E. It should be noted that the frequency resolution of SID is
sufficient for any tuning scale and allows sweeping from note to note
(portamento) with no discernable frequency steps.

PW LO/PW HI (Registers 02,03)

Together these registers form a l2-bit number (bits 4-7 of PW HI are
not used) which linearly controls the Pulse Width (duty cycle) of the Pulse
waveform on Oscillator 1. The pulse width is determined by the follow-
ing equation:

PWout = (PWn/40.95) %

W~ere PWn is the l2-bit number in the Pulse Width registers.
The pulse width resolution allows the width to be smoothly swept with

no discernable stepping. Note that the Pulse waveform on Oscillator 1
must be selected in order for the Pulse Width registers to have any au-
dible effect. A value of 0 or 4095 ($FF) in the Pulse Width registers will

produce a constant DC output, while a value of 2048 ($800) will produce
a square wave.

462 APPENDIX0

CONTROL REGISTER (Register 04)

This register contains eight control bits which select various options on
Oscillator 1.

GATE (Bit 0): The GATEbit controls the Envelope Generator for Voice
1. When this bit is set to a one, the Envelope Generator is Gated
(triggered) and the ATTACK/DECAY/SUSTAINcycle is initiated. When the
bit is reset to a zero, the RELEASEcycle begins. The Envelope Generator
controls the amplitude of Oscillator 1 appearing at the audio output,
therefore, the GATEbit must be set (along with suitable envelope pa-
rameters) for the selected output of Oscillator 1 to be audible. A de-
tailed discussion of the Envelope Generator can be found at the end of
this Appendix.

SYNC (Bit 1): The SYNC bit, when set to a one, synchronizes the
fundamental frequency of Oscillator 1 with the fundamental frequency
of Oscillator 3, producing "Hard Sync" effects.

Varying the frequency of Oscillator 1 with respect to Oscillator 3 pro-
duces a wide range of complex harmonic structures from Voice 1 at the
frequency of Oscillator 3. In order for sync to occur, Oscillator 3 must be
set to some frequency other than zero but preferably lower than the
frequency of Oscillator 1. No other parameters of Voice 3 have any
effect on sync.

RING MOD (Bit 2): The RING MOD bit, when set to a one, replaces
the Triangle waveform output of Oscillator 1 with a "Ring Modulated"
combination of Oscillators 1 and 3. Varying the frequency of Oscillator 1
with respect to Oscillator 3 produces a wide range of non-harmonic
overtone structures for creating bell or gong sounds and for special ef-
fects. In order for ring modulation to be audible, the Triangle waveform
of Oscillator 1 must be selected and Oscillator 3 must be set to some

frequency other than zero. No other parameters of Voice 3 have any
effect on ring modulation.

TEST (Bit 3): The TESTbit, when set to a one, resets and locks Oscil-
lator 1 at zero until the TESTbit is cleared. The Noise waveform output
of Oscillator 1 is also reset and the Pulse waveform output is held at a
DC level. Normally this bit is used for testing purposes, however, it can
be used to synchronize Oscillator 1 to external events, allowing the
generation of highly complex waveforms under real-time software con-
trol.

APPENDIX0 . 463

(Bit 4): When set to a one, the Triangle waveform output of Oscillator
1 is selected. The Triangle waveform is low in harmonics and has a
mellow, flute-like. quality.

(Bit 5): When' set to a one, the Sawtooth waveform output of Oscil-
lator 1 is selected. The Sawtooth waveform is rich in even and odd

harmonics and has a bright, brassy quality.
(Bit 6): When set to a one, the Pulse waveform output.of'Osciliator 1

is selected. The harmonic content of this waveform can be adjusted by
the Pulse' Width registers, producing tone qualities ranging from a
bright, hollow square wave to a nasal, reedy pulse. Sweeping the pulse
width in real-time produces a dynamic "phasing" effect which adds a
sense of motion to the sound. Rapidly jumping between different pulse
widths can produce interesting harmonic sequences.

NOISE (Bit 7): When set to a one, the Noise output waveform of
Oscillator 1 is selected. This output is a random signal which changes at
the frequency of Oscillator 1. The sound quality can be varied from a
low rumbling to hissing white noise via the Oscillator 1 Frequency regis-
ters. Noise is useful in creating explosions, gunshots, jet engines, wind,
surf and other unpitched sounds, as well as snare drums and cymbals.
Sweeping the oscillator. frequency with Noise selected produces a dra-
matic rushing effect.

One of the output waveforms must be selected for Oscillator 1 to be
audible, however, it is NOT necessary to de-select waveforms to silence
the output of Voice 1. The amplitude of Voice 1 at the final output is a
function of the Envelope Generator only.

NOTE: The oscillotor output waveforms are NOT additive. If more than one output

waveform is selected simultaneously, the result will be a logical ANDing af the
waveforms. Although this technique can be used to generate additional waveforms

beyond the four listed above, it. must be used with care. If any other waveform is
selected while Noise is on, the Noise.output can "lock up." If this occurs, the Noise
output will remain silent until reset by the TEST bit or by bringing RES (pin 5) low.

464 APPENDIX 0

ATTACK/DECAY(Register 05)

Bits 4-7 of this register (ATKO-ATK3)select 1 of 16 ATTACKrates for
the Voice 1 Envelope Generator. The ATTACKrate determines how
rapidly the output of Voice 1 rises from zero to peak amplitude when the
Envelope Generator is Gated. The 16 ATTACKrates are listed in Table 2.

Bits 0-3 (DCYO- DCY3) select 1 of 16 DECAYrates for the Envelope
Generator. The DECAYcycle follows the ATTACKcycle and the DECAY
rate determines how rapidly the output falls from the peak amplitude to
the selected SUSTAINlevel. The 16 DECAYrates are listed in Table 2.

SUSTAIN/RELEASE(Register 06)

Bits 4-7 of this register (STNO-STN3) select 1 of 16 SUSTAINlevels for

the Envelope Generator. The SUSTAINcycle follows the DECAYcycle and
the output of Voice 1 will remain at the selected SUSTAINamplitude as
long as the Gate bit remains set. The SUSTAINlevels range from zero to
peak amplitude in 16 linear steps, with a SUSTAINvalue of 0 selecting
zero amplitude and a SUSTAIN value of 15 ($F) selecting the peak
amplitude. A SUSTAINvalue of 8 would cause Voice 1 to SUSTAINat an
amplitude one-half the peak amplitude reached by the ATTACKcycle.

Bits 0- 3 (RLSO-RLS3) select 1 of 16 RELEASErates for the Envelope
Generator. The RELEASEcycle follows the SUSTAINcycle when the Gate
bit is reset to zero. At this time, the output of Voice 1 will fall from the
SUSTAINamplitude to zero amplitude at the selected RELEASErate. The
16 RELEASErates are identical to the DECAYrates.

NOTE: The cycling of the Envelope Generator can be altered at any point via the Gat.
bit. The Envelope Generator can be Gated and Released without restriction. For

example, if the Gate bit is reset before the envelope has finished the ATTACKcycle,
the RelEASE cycle will immediately begin, starting from whatever amplitude hod
been reached. If the envelope is then Gated again (before the RelEASE cycle has

reached zero amplitude), another ATTACKcycle will begin, starting from whatever

amplitude had been reached. This technique can be used to generate complex

amplitude envelopes. via real-time software control.

APPENDIX 0 465

Table 2. Envelope Rates

NOTE Envelope rates are based on a 1.00MHz cf>2clock. For other cf>2frequencies,

multiply the given rate by I MHz/cf>2.The rates refer to the amount of time per cycle.
For example, given an ATTACKvalue of 2, the ATTACKcycle would take 16 ms to rise

from zero to peak amplitude. The DECAY/RelEASErates refer to the amount of time
these cycles would take to fall from peak amplitude to zero.

VOICE 2

Registers 07-$OD control Voice 2 and are functionally identical to reg-
isters 00-06 with these exceptions:

1) When selected, SYNC synchronizes Oscillator 2 with Oscillator 1.
2) When selected, RING MOD replaces the Triangle output of Oscil-

lator 2 with the ring modulated combination of Oscillators 2 and 1.

466 APPENDIX 0

VALUE ATTACK RATE DECAY/RELEASE RATE

DEC (HEX) (Time/Cycle) (Time/Cycle)

0 (0) 2 ms 6 ms

1 (1) 8 ms 24 ms

2 (2) 16 ms 48 ms

3 (3) 24 ms 72 ms

4 (4) 38 ms 114 ms

5 (5) 56 ms 168 ms

6 (6) 68 ms 204 ms

7 (7) 80 ms 240 ms

8 (8) 100 ms 300 ms

9 (9) 250 ms 750 ms

10 (A) 500 ms 1.5 5

11 (B) 800 ms 2.4 5

12 (C) 1 5 3 5

13 (D) 3 s 9 s

14 (E) 5 5 15 s

15 (F) 8 5 24 s

VOICE 3

Registers $OE- $14 control Voice 3 and are functionally identical to
registers 00-06 with these exceptions:

1) When selected, SYNC synchronizes Oscillator 3 with Oscillator 2.
2) When selected, RING MOD replaces the Triangle output of Oscil-

lator 3 with the ring modulated combination of Oscillators 3 and 2.

Typical operation of a voice consists of selecting the desired parame-
ters: frequency, waveform, effects (SYNC, RING MOD) and envelope
rates, then gating the voice whenever the sound is desired.. The sound
can be sustained for any length of time and terminated by clearing the
Gate bit. Each voice can be used separately, with independent parame-
ters and gating, or in unison to create a single, powerful voice. When
used in unison, a slight detuning of each oscillator or tuning to musical
intervals creates a rich, animated sound.

FILTER

FC LO/FC HI (Registers $15,$16)

Together these registers form an 11-bit number (bits 3-7 of FC LO are
not used) which linearly controls the Cutoff (or Center) Frequency of the
programmable Filter. The approximate Cutoff Frequency ranges from 30
Hz to 12 KHz.

RES/FILT (Register $17)

Bits 4-7 of this register (RESO- RES3) control the resonance of the
filter. Resonance is a peaking effect which emphasizes frequency com-
ponents at the Cutoff Frequency of the Filter, causing a sharper sound.
There are 16 resonance settings ranging linearly from no resonance (0)
to maximum resonance (15 or $F). Bits 0-3 determine which signals will

be routed through the Filter:
FILT1 (Bit 0): When set to a zero, Voice 1 appears directly at the

audio output and the Filter has no effect on it. When set to a one, Voice
1 will be processed through the Filter and the harmonic content of Voice
1 will be altered according to the selected Filter parameters.

FILT2 (Bit 1): Same as bit 0 for Voice 2.
FILT3 (Bit 2): Same as bit 0 for Voice 3.
FILTEX(Bit 3): Same as bit 0 for External audio input (pin 26).

APPENDIX0 467

MODE/VOL (Register $18)

Bits 4-7 of this register select various Filter mode and output options:
LP (Bit 4): When set to a one, the Low-Pass output of the Filter is

selected and sent to the audio output. For a given Filter input signal, all
frequency components below the Filter Cutoff Frequency are passed
unaltered, while all frequency components above the Cutoff are at-
tenuated at a rate of 12 dB/Octave. The Low-Pass mode produces full-
bodied sounds.

BP (Bit 5): Same as bit 4 for the Bandpass output. All frequency
components above and below the Cutoff are attenuated at a rate of 6

dB/Octave. The Bandpass mode produces thin, open sounds.
HP (Bit 6): Same as bit 4 for the High-Pass output. All frequency

components above the Cutoff are passed unaltered, while all frequency
components below the Cutoff are attenuated at a rate of 12 dB/Octave.
The High-Pass mode produces tinny, buzzy sounds.

3 OFF (Bit 7): When set to a one, the output of Voice 3 is disconnected
from the direct audio path. Setting Voice 3 to bypass the Filter (FILT3 =
0) and setting 3 OFF to a one prevents Voice 3 from reaching the audio
output. This allows Voice 3 to be used for modulation purposes without
any undesirable output.

NOTE: The Filter output modes ARE additive and multiple Filter modes may be

selected simultaneously. For example, both LP and HP modes can be selected to

produce a Notch (or Band Reject) Filter response. In order for the Filter to have any
audible effect, at least one Filter output must be selected and at least one Voice must
be routed through the Filter. The Filter is, perhaps, the most important element in SID

as it allows the generation of complex tone colors via subtractive synthesis (the Filter
is used to eliminate specific frequency components from a harmonically rich input
signal). The best results are achieved by varying the Cutoff Frequency in real-time.

Bits 0-3 (VOLO- VOL3) select 1 of 16 overall Volume levels for the
final composite audio output. The output volume levels range from no
output (0) to maximum volume (15 or $F) in 16 linear steps. This control
can be used as a static volume control for balancing levels in multi-chip
systems or for creating dynamic volume effects, such as Tremolo. Some
Volume level other than zero must be selected in order for SID to pro-
duce any sound.

468 APPENDIX0

MISCELLANEOUS

POTX (Register $19)

This register allows the microprocessor to read the position of the
potentiometer tied to POTX (pin 24), with values ranging from 0 at
minimum resistance, to 255 ($FF) at maximum resistance. The value is
always valid and is updated every 512 <p2 clock cycles. See the Pin
Description section for information on pot and capacitor values.

POTY (Register $lA)

Same as POTX for the pot tied to POTY (pin 23).

OSC 3/RANDOM (Register $1 B)

This register allows the microprocessor to read the upper 8 output bits
of Oscillator 3. The character of the numbers generated is directly re-
lated to the waveform selected. If the Sawtooth waveform of Oscillator

3 is selected, this register will present a series of numbers incrementing
from 0 to 255 ($FF) at a rate ,determined by the frequency of Oscillator
3. If the Triangle waveform is selected, the output will increment from 0
up to 255, then decrement down to O. If the Pulse waveform is selected,
the output will jump between 0 and' 255. Selecting the Noise waveform
will produ.ce a series of random numbers, therefore, this register can be
used as a random number generator for games. There are numerous
timing and sequencing applications for the OSC 3 register, however, the
chief function is probably that of a modulation generator. The numbers
generated by this register can be added, via software, to the Oscillator
,or Filter Frequency registers or the Pulse Width registers in real-time.
Many dynamic effects can be generated in this manner. Siren~like
sounds can be created by adding the OSC 3 Sawtooth output to the
frequency control of another oscillator. Synthesizer "Sample and Hold"
effects can be produced by adding the OSC 3 Noise output to the Filter
Frequency control registers. Vibrato can .be produced by setting Oscil-
lator 3 -to a frequency around 7 Hz and adding the OSC 3 Triangle
.output (with proper scaling) to the Frequency control of another oscil-
lator. An ;unlimitedrange of effects are available by altering the fre-
quency of Oscillator 3 and scaling the OSC 3 -output. Normally, when
Oscillator 3 is used for modulation, the audio output of Voice 3 should
be eliminated (3 OfF = 1).

APPENDIX0 469

ENV 3 (Register $1C)

Same as OSC 3, but this register allows the microprocessor to read
the output of the Voice 3 Envelope Generator. This output can be added
to the Filter Frequency to produce harmonic envelopes, WAH-WAH, and

similar effects. "Phaser" sounds can be created by adding this output to
the frequency control registers of an oscillator. The Voice '3 Envelope
Generator must be Gated in order to produce any output from this regis-
ter. The OSC 3 register, however, always reflects the changing output of
the oscillator and is not affected in any way by the Envelope Generator.

SID PIN DESCRIPTION
CAPlA,CAPlB, (Pins 1,2)/ CAP2A,CAP2B(Pins 3,4)

These pins are used to connect the two inte.gratin.g capacitors re-
quired by the programmable Filter. Cl connects between pins 1 and 2,
C2 between pins 3 and 4. Both capacitors should be the same value.
Normal operation of the Filter over the audio range (approximately 30
Hz-12 kHz) is accomplished with a value of 2200 pF for Cl and C2.

.Polystyrene capacitors are preferred and in complex polyphonic sys-
tems, where many SID chips must track each other, matched capacitors
are recommended.

The frequency range of the Filter can be tailored to specific applica-
tions by the choice of capacitor values. For example, a low-cost game
may not require full high-frequency response. In this case, larger values

. for Cl and C2 could be chosen to provide more control over the bass
frequencies of the Filter. The maximum Cutoff Frequency of the Filter is
given by:

FCmax = 2.6E-S/C

Where C is the capacitor value. The range of the Filter extends 9 octaves
below the maximum Cutoff Frequency.

RES (Pin 5)

This TTl-level input is the reset control for SID. When brought low for
at least ten cf>2cycles, all internal registers are reset to zero and the
audio output is silenced. This pin is normally connected to the reset line
of the microprocessor or a power-on-clear circuit.

470 APPENDIX 0

cp2 (Pin 6)

This TTL-Ievel input is the master clock for SID. All oscillator frequen-

cies and envelope rates are referenced to this clock. cp2 also controls

data transfers between SID and the microprocessor. Data can only be

transferred when cp2 is high. Essentially, cp2 acts as a high-active chip

select as far as data transfers are concerned. This pin is normally con-
nected to the system clock, with a nominal operating frequency of 1.0
MHz.

R/W (Pin 7)

This TTL-Ievel input controls the direction of data transfers between

SID and the microprocessor. If the chip select conditions have been met,

a high on this line allows the microprocessor to Read data from the
selected SID register and a low allows the microprocessor to Write data

into the selected SID register. .This pin is normally connected to the sys-
tem Read/Write line.

CS (Pin 8)

This TTL-Ievel input is a low active chip select which controls data
transfers between SID and the microprocessor. CS must be low for any

transfer. A Read from the selected SID register can only occur if CS is
low, cp2 is high and R/W is high. A Write to the selected SID register can
only occur if CS is low, cp2 is high and R/W is low. This pin is normally

connected to address decoding circuitry, allowing SID to reside in the
memory map of a system.

AO-A4 (Pins 9-13)

These TTL-Ievel inputs are used to select one of the 29 SID registers.
Although enough addresses are provided to select 1 of 32 registers, the

remaining three register locations are not used. A Write to any of these
three locations is ignored and a Read returns invalid data. These pins
are normally connected to the corresponding address lines of the mi-
croprocessor so that SID may be addressed in the same manner as

memory.

GND (Pin 14)

For best results, the ground line between SID and the power supply
should be separate from ground lines to other digital circuitry. This will

minimize digital noise at the audio output.

APPENDIX0 471

DO-D7 (Pins 15-22)

These bidirectional lines are used to transfer data between SID and

the microprocessor. They are TTLcompatible in the input mode and ca-
pable of driving 2 TTLloads in the output mode. The data 'buffers are
usually in the high-impedance off state. During a Write 'operation, the
data buffers remain in the off (input) state and the microprocessor
supplies data to SID over these lines. During a Read operation, the.data
buffers turn on and SID supplies data to the microprocessor .over these
lines. The pins are normally connected to the corresponding data lines of
the microprocessor.

POTX,POTY(Pins 24,23)

These pins are inputs to the AID converters used to digitize the posi-
tion of potentiometers. The conversion process is based on the time con-
stant of a capacitor tied from the POT pin to ground, charged by a
potentiometer tied from the POT pin to +5 volts. The component values
are determined by:

RC = 4.7E-4

Where R is the maximum resistance 'of the pot and C is the capacitor.
The larger the capacitor, the smaller the POT value titter. The recom-

mended values forR and Care 470 kG and 1000 pF. Note that a
separate pot and cap are required for each POT pin.

Vcc (Pin 25)

As with the 'GND line, a separate +5 VDC line should be run between
SID Vcc and the power supply in order to minimize noise. A bypass
capacitor should be located close to the pin.

EXT IN (Pin 26)

This analog input allows external audio signals to be mixed with the
audio output of SID or processed through the Filter. Typical sources in-
clude voice, guitar, and organ. The input impedance of this pin is on the
order of .100 'kG. Any signal applied directly to the pin should ride at a
DC levelof6 volts and should not exceed 3 volts p-p. In order to pre-

472 APPENDIX 0

vent any interference caused by DC level differences, external signals
should be AC-coupled to EXT IN by an electrolytic capacitor in the 1- 10
J1-Frange. As the direct audio path (FILTEX=O)has unity gain, EXT IN
can be used to mix outputs of many SID chips by daisy-chaining. The
number of chips that can be chained in this manner is determined by the
amount of noise and distortion allowable at the final output. Note that
the output Volume control will affect not only the three SID voices, but
also any external inputs.

AUDIO OUT (Pin 27)

This open-source buffer is the final audio output of SID, comprised of
the three SID voices, the Filter and any external input. The output level is
set by the output Volume control and reaches a maximum of 2 volts p-p
at a DC level of 6 volts. A source resistor from AUDIO OUT to ground is
required for proper operation. The recommended resistance is 1 kO for
a standard output impedance.

As the output of SID rides at a 6-volt DC level, it should be AC-
coupled to any audio amplifier with an electrolytic capacitor in the 1-10
J1-Frange.

VDD(Pin 28)

As with Vee, a separate + 12 VDC line should be run to SID VDDand a
bypass capacitor should be used.

6581 SID CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS

APPENDIX0 473

RATING SYMBOL VALUE UNITS

Supply Voltage VDD -0.3 to +17 VDC

Supply Voltage Vee -0.3 to +7 VDC

Input Voltage (analog) Vina -0.3 to +17 VDC

Input Voltage (digital) V1nd -0.3 to +7 VDC

Operating Temperature TA o to + 70 °c
Storage Temperature TSTG - 55 to + 150 °c

~'I
~

~
"V
"Vm
Z
C
X
o

ELECTRICAL CHARACTERISTICS (V DD = 12 VDC:t 5%, Vcc = 5 VDC:t 5%, TA= 0 to 70° C)

CHARACTERISTIC SYMBOL MIN TYP MAX UNITS

Input High Voltage (RES, cf>2, R/W, CS, V1H 2 - Vcc VOC

Input low Voltage AO-A4, 00-D7) V1L -0.3 - 0.8 VOC

Input leakage Current (RES, cf>2, R/W, CS, Iin - - 2.5 J.tA
AO-A4; V1n=0-5 VDC)

Three-State (Off) (00-07; Vcc=max) ITS1 - - 10 J.tA

Input leakage Current Vin=O.4-2.4 VOC

Output High Voltage (00-07; Vcc=min, VOH 2.4 - Vcc-0.7 VOC

I load =200 J.tA)

Output low Voltage (00-07; Vcc=max, VOL GNO - 0.4 VOC
Iload=3.2 mA)

Output High Current (00-07; Sourcing, IOH 200 - - J.tA
VoH=2.4VOC)

>."."m
Z
o
X
o

........\II

Output LowCurrent (DO-D7; Sinking, 10L 3.2 - - mA
VOL=0.4 VDC)

Input Capacitance (RES, q,2, R/W, CS, Cin - - 10 pF
AO-A4, DO-D7)

Pot Trigger Voltage (POTX, POTY) Vpot - Vecl2 - VDC

Pot Sink Current (POTX, POTY) Ipot 500 - - /LA

Input Impedance (EXTIN) Rin 100 150 - kO

Audio Input Voltage (EXTIN) Vin 5.7 6 6.3 VDC
- 0.5 3 VAC

Audio Output Voltage (AUDIO OUT; 1 kO
load, volume=max) Vout 5.7 6 6.3 VDC
One Voice on: 0.4 0.5 0.6 VAC
All Voices on: 1.0 1.5 2.0 VAC

Power Supply Current (VDD) IDD - 20 25 mA

Power Supply Current (Vee) Ice - 70 100 mA

Power Dissipation (TotaI) PD - 600 1000 mW

6581 SID TIMING

I--- TACC.

TCYC

"2

I I TRS

R/W

.r Ace is measured from the latest occurring of 02. CS. AO-A4"

READ CYCLE

476 APPENDIX0

SYMBOL NAME MIN TYP MAX UNITS

Tcyc I Clock Cycle Time 1 - 20 J.ts
Tc Clock High Pulse Width 450 500 10,000 ns

TR,TF Clock Rise/Fall Time - - 25 ns
TRS Read Set-Up Time 0 - - ns
TRH Read Hold Time 0 - - ns
TAce Access Time - - 300 ns
TAH Address Hold Time 10 - - ns
TCH Chip Select Hold Time 0 - - ns

TDH Data Hold Time 20 - - ns

<>2\

R/W

8TW.is measured from the latest occurring of 4>2.CS, Rm.

WRITE CYCLE

APPENDIX0 477

SYMBOL NAME MIN TYP MAX UNITS

Tw Write Pulse Width 300 - - ns
TWH Write Hold Time 0 - - ns

TAWS Address Set-up Time 0 - - ns

TAH Address Hold Time 10 - - ns

TCH Chip Select Hold Time 0 - - ns

TVD Valid Data 80 - - ns

TDH Data Hold Time 10 - - ns

EQUAL-TEMPERED MUSICAL SCALE VALUES

The table in Appendix E lists the numerical values which must be
stored in the SID Oscillator frequency control registers to produce the
notes of the equal-tempered musical scale. The equal-tempered scale
consists of an octave containing 12 semitones (notes): C,D,E,F,G,A,B
and C#,D#,F#,G#,A#. The frequency of each semitone is exactly the
12th root of 2 (\r2> times the frequency of the previous semitone. The

table is based on a <1>2clock of 1.02 MHz. Refer to the equation given in
the Register Description for use of other master clock frequencies. The
scale selected is concert pitch, in which A-4 = 440 Hz. Transpositions of
this scale and scales other than the equal-tempered scale are also pos-
sible.

Although the table in Appendix E provides a simple and quick method
for generating the equal-tempered scale, it is very memory inefficient as
it requires 192 bytes for the table alone. Memory efficiency can be im-
proved by determining the note value algorithmically. Using the fact that
each note in an octave is exactly half the frequency of that note in the
next octave, the note look-up table can be reduced from 96 entries to 12
entries, as there are 12 notes per octave. If the 12 entries (24 bytes)
consist of the 16-bit values for the eighth octave (C-7 through B-7), then
notes in lower octaves can be derived by choosing the appropriate note
in the eighth octave and dividing the 16-bit value by two for each octave
of difference. As division by two is nothing more than a right-shift of the
value, the calculation can easily be acc-omplished by a simple software
routine. Although note B-7 is beyond the range of the oscillators, this
value should still be included in the table for calculation purposes (the
MSB of B-7 would require a special software case, such as generating
this bit in the CARRY before shifting). Each note must be specified in a
form which indicates which of the 12 semitones is desired, and which of
the eight octaves the semitone is in. Since four bits are necessary to
select 1 of 12 semitones and three bits are necessary to select 1 of 8
octaves, the information can fit in one byte, with the lower nybble select-
ing the semitone (by addressing the look-up table) and the upper nybble
being used by the division routine to determine how many times the
table value must be right-shifted.

478 APPENDIX0

SID ENVELOPE GENERATORS

The four-part ADSR (ATTACK,DECAY, SUSTAIN, RELEASE)envelope
generator has been proven in electronic music to provide the optimum
trade-off between flexibility and ease of amplitude control. Appropriate
selection of envelope parameters allows the simulation of a wide range
of percussion and sustained instruments. The violin is a good example of
a sustained instrument. The violinist controls the volume by bowing the
instrument. Typically, the volume builds slowly, reaches a peak, then
drops to an intermediate level. The violinist can maintain this level for as

long as desired, then the volume is allowed to slowly die away. A
"snapshot" of this envelope is shown below:

PEAK AMPLITUDE

ZERO AMPLITUDE

This volume envelope can be easily reproduced by the ADSR as shown

below, with typical envelope rates:

ATTACK:

DECAY:
SUSTAIN:
RELEASE:

10 ($A)
8

10 ($A)
9

500 ms

300 ms

750 ms

Note that the tone can be held at the intermediate SUSTAINlevel for

as long as desired. The tone will not begin to die away until GATEis
cleared. With minor alterations, this basic envelope can be used for
brass and woodwinds as well as strings.

An entirely different form of envelope is produced by percussion in-
struments such as drums, cymbals and gongs, as well as certain
keyboards such as pianos and harpsichords. The percussion envelope is
characterized by a nearly instantaneous attack, immediately followed
by a decay to zero volume. Percussion instruments cannot be sustained

APPENDIX 0 479

at a constant amplitude. For example, the instant a drum is struck, the
sound reaches full volume and decays rapidly regardless of how it was
struck. A typical cymbal envelope is shown below:

Note that the tone immediately begins to decay to zero amplitude
after the peak is reached, regardless of when GATE is cleared. The
amplitude envelope of pianos and harpsichords is somewhat more
complicated, but can be generated quite easily with the ADSR. These
instruments reach full volume when a key is first struck. The amplitude
immediately begins to die away slowly as long as the key remains de-
pressed. If the key is released before the sound has fully died away, the
amplitude will immediately drop to zero. This envelope is shown below:

Note that the tone decays slowly until GATEis cleared, at which point
the amplitude drops rapidly to zero.

The most simple envelope is that of the organ, When a key is pressed,
the tone immediately reaches full volume and remains there. When the
key is released, the tone drops immediately to zero volume. This
envelope is shown below:

The real power of SID lies in the ability to create original sounds

rather than simulations of acoustic instruments. The ADSR is capable of
creating envelopes which do not correspond to any "real" instruments. A
good example would be the "backwards" envelope. This envelope is
characterized by a slow attack and rapid decay which sounds very

480 APPENDIX0

ATTACK: 0 2ms
DECAY: 9 750ms
SUSTAIN: 0

RELEASE: 9 750ms -=r-----

ATTACK: 0 2 ms

DECAY: 9 750 ms

SUSTAIN: 0

RELEASE: 0 6 ms

ATTACK: 0 2 ms

J lDECAY: 0 6 ms

SUSTAIN: 15 ($F)
RELEASE: 0 6 ms

.=J L

much like an instrument that has been recorded on tape then played
backwards. This envelope is shown below:

Many unique sounds can be created by applying the amplitude
envelope of one instrument to the harmonic structure of another. This
produces sounds similar to familiar acoustic instruments, yet notably dif-
ferent. In general, sound is quite subjective and experimentation with
various envelope rates and harmonic contents will be necessary in order
to achieve the desired sound.

+12V +5V

POT X

AUDIO OUT

EXT IN

6581
SOD

POT Y

650X
MPU

TYPICAL 6581/510 APPLICATION

APPENDIX 0 481

s

ATTACK: 10 ($A) 500 ms
DECAY: 0 6 ms
SUSTAIN: 15 ($F)
RELEASE: 3 72 ms

AUDIO

ELECTRO..¥TIC OUT

----;jf---
1.0p.F

1kU

AUDIO
ELECTROLYTIC IN

----;jf---
1.0pF

.sv

PADDLES
.s v

APPENDIX P

GLOSSARY

ADSR
attack

binary
Boolean operators
byte
CHROMA noise
CIA
DDR

decay

decimal
e

envelope
FIFO
hexadecimal

integer
jiffy clock
NMI
octal

operand
OS

pixel
queue
register
release

ROM
SID

signed numbers
subscript
sustain

syntax
truncated
VIC-II
video screen

482 APPENDIXP

AttacklDecay/Sustain/Release envelope.
Rate at which musical note reaches peak
volume.

Base-2 number system.
Logical operators.
Memory location.
Color distortion.

Complex Interface Adapter.
Data Direction Register.
Rate at which musical note falls from peak
volume to sustain volume.
Base-lO number system.
Mathematical constant (approx. 2.71828183).
Shape of the volume of a note over time.
First-In/First-Out.

Base-16 number system.
Whole number (without decimal point).
Hardware interval timer.

Non-Maskable Interrupt.
Base-8 number system.
Parameter.

Operating System.
Dot of resolution on the screen.
Single-file line.
Special memory storage location.
Rate at which a musical note falls from
sustain volume to no volume.

Read-Only Memory.
Sound Interface Device.
Plus or minus numbers.
Index variable.
Volume level for sustain of musical note.

Programming sentence structure.
Cut off, eliminated (not rounded).
Video Interface Chip.
Television set.

INDEX
Abbreviations, BASIC Commands, State-

ments, and Functions, x, 29, 31-34,
374-375

ABS function, 31, 35, 374
Accessories, 335-371
Accumulator, 213
ACPTR, 272-274
ADC, 232, 235, 254
Addition, 3, 9-11,16
Addressing, 211, 215-217, 411-413
AlD/S/R, 183-185, 189, 196-199
AND, 232, 235, 254
AND operator, 13-16,31, 35-36, 374
Animation, xiii, 153, 166
Applications, xiii-xvi
Arithmetic expressions, 10-12
Arithmetic operators, 10-12, 16
Arrays, 10-12, 44-45
ASC function, 31, 37, 374
ASCII character codes, 31, 38, 340, 374
ASL, 232, 236, 254
Assembler, 215, 218, 227, 310
ArcTaNgent function, 31, 38, 374
Attack, (see AID/SIR)

Bank selection, 101-102, 133
BASIC abbreviations, 29, 31-34, 374-375
BASIC commands, 31-34, 41, 58-60, 62,

81-82, 91
BASIC miscellaneous functions, 31-34,

43-44,49,56-57,61,69,70,80,83-85,
89

BASIC numeric functions, 31-35, 37-38, 42,
46-47, 49, 83-84, 88-89

BASIC operators, 3, 9-15, 31-36, 63-64,
68, 92

BASIC statements, 18-26,31-34,39-55,57,
62-67, 69-79, 86-87, 92

BASIC string functions, 31-34, 38, 56, 61,
79, 87, 89

BASIC variables, 7-26
BCC, 232, 236, 254
BCS, 232, 236, 254
BEQ, 226-227, 232, 237, 254
Bibliography, 388-390
Binary, 69, 92, 108, 112, 216-217
Bit, 99-149, 290, 298, 300-301, 305, 343-

357, 359
BIT, 232, 237, 254
Bit map mode, 121-130
Bit map mode, multicolor, 127-130
Bit mapping, 121-130
BMI, 232, 237, 254
BNE, 226-227, 232, 238, 254
Boolean arithmetic, 14
BPL, 232, 238, 254
Branches and testing, 226-227
BRK, 232, 238, 254
Buffer, keyboard, 93

Business aids, xiii-xvi
BVC, 232, 239, 254
BVS, 232, 239, 254
Byte, 9, 104, 108, 117-119, 124-127, 196,

213, 218-220, 222-227, 260-263, 274,
278-279, 286, 292-293, 299, 307, 349,
357-359

Cassette port, 337, 340-342
Cassette, tape recorder, xiii, 39-41, 65-67,

81-82,91, 187, 192,283,293-294,297,
320-321, 337-338, 340-342

Character PEEKs and POKEs, 104, 106,
109-111, 115, 118, 120-122, 127-130,
134-137, 150, 154-155, 159-161, 165-
166

CHAREN, 260-261
CHKIN, 272-273, 275
CHKOUT, 272-273, 276
CHRGET, 272-273, 307-308
CHRIN, 272-273, 277-278
CHROUT, 272-273, 278-279
CHR$ function, 24, 31, 37-38, 45, 50, 55,

75-76, 93-94, 97, 120, 156, 336-342,
374, 379-381

CINT, 272-273, 280
ClOUT, 272-273, 279-280
CLALL,272-273, 281
CLC, 232, 239, 254
CLD, 232, 240, 254
ClI, 232, 240, 254
Clock, 80, 89, 314, 329-332, 366, 406-408,

421-427,431,451
Clock timing diagram, 406-408
CLOSE, 272-273, 281-282
CLOSE statement, 31, 39-41, 348, 354, 374
CLR statement, 31, 39-40, 81, 109,374
CLRCHN, 272-273, 282
CLR/HOME key, 220
CLV, 232, 240, 254
CMD statement, 31, 40-41, 374
CMP, 232, 241, 254
Collision detect, 144-145, 180
Color adjustment, 113
Color combinations chart, 152
Color memory, 103
Color register, 117, 120, 128, 135-136, 179
Color screen, background, border, 115-

119,128,135-137,176,179-180
Commands, BASIC, 31-92
Commodore magazine, xvii-xviii, 390
Commodore 64 memory map, 310
Complement, fWos, 63-64
Constants, floating-point, integer, string,

4-7, 46, 77-78
CONTinue command, 31, 41-42, 46, 81,

86, 374
ConTRoL key, 58, 72, 93-97, 171
COSine function, 31-34, 42, 374

INDEX 483

CP/M, x, xiv, 368-371
CPX, 227, 232, 241, 254
CPY, 227, 232, 241, 254
Crunching BASIC programs, 24-27, 156
CuRSoR keys, 93-97, 336

DATASSETTeMrecorder, (see cossette,
tope recorder)

DATA statement, 26, 31, 42-43, 76-77,
111-114, 164, 169, 174,374

DEC, 232, 242, 254
Decoy, (see AlD/S/R)
DEFine FuNction statement, 31, 43-44, 374
DElete key, 71-72, 95-96
DEX, 226, 232, 242, 254
DEY, 226, 232, 242, 254
DIMension statement, 9, 31, 44-45, 374
Direct mode, 3
Division, 3, 10-11

Edit mode, 93-97
Editor, screen, 93-97
END statement, 32, 46, 79, 93, 374
Envelope generator, (see AlD/S/R)
EOR, 232, 243, 254
Equal, not-equal-to signs, 3, 9- I 2
Error messages, 306, 400-401
Expansion port(s), (also user port, serial

port, RS-232 port), 335-371
EXPonent function, 32, 46, 374
Exponentiation, 5-6, 10, 12, 16

Files (cossette), 40, 50, 55, 59-60, 65-66,
75, 84-85, 91, 337-338, 340-342

Files (disk), 40, 50, 55, 59-60, 65-66, 75,
84-85, 91, 337-338, 342

Filtering, 183, 189, 199-202
Fire button, joystick/paddle/lightpen, 328-

329, 343-348
FOR statement, 20-21, 32, 39, 47-48,

62-63, 77-78, 86, 110, 155- I 56, 165-
166, 169-171, 198-199,309,374

FootbaII, 45
FREefunction, 32, 49, 109, 374
FuNction function, 32, 47, 374
Functions, 31-34, 35, 37-38, 42, 46-47, 49,

56-57, 61, 69-70, 79-80, 83-85, 87-90,
374-375

Game controls and ports, 343-348
GET statement, 22-24, 32, 37, 49-50, 93,

374-375
GETIN, 272-273, 283
GET# statement, 32, 37, 50, 55, 65, 341-

342, 348, 374
GOSUB statement, 32, 39, 51-52, 77, 79,

85, 374
GOTO (GO TO) statement, 32, 37, 48,

52-53, 64, 77, 81, 86, 374
Graphics keys, xiv-xv, 70-74, 95-96, 108-

114

484 INDEX

Graphics mode, xiv-xv, 99-183
Graphics mode, bit mopped, 121-130
Graphics symbols, (see graphics keys)
Greater than, equal to or, 3, 12-13, 16

Hexadecimal notation, 101,209,215-218
Hierarchy of operations, 16

IEEE-488interface, (see serial port)
IF . . . THEN statement, 32, 46-47, 49,

52-53, 64, 70, 86, 172-173, 180, 374
INC, 232, 243, 254
Income/expense program, 20-21
Indexed indirect, 224-225
Indexing, 223-225
Indirect indexed, 223-224
INPUT statement, 18-22, 32, 45, 53-55, 93,

374
INPUT# statement, 32, 55, 75, 86, 88, 90,

374
INSerT key, 72, 95-96
INTeger function, 32, 56, 80, 374
Integer, arrays, constants, variables, 4-5,

7-9
INX, 226-227, 232, 243, 254
INY, 226-227, 232, 244, 254
10BASE, 272-273, 284
I/O Guide, 335-375
101NIT, 272-273, 285
I/O Pinouts, 395-397
I/O Ports, 214, 260, 335-375
I/O Registers, 104-106, 212-214
I/O Statements, 39, 50, 54-55, 65-67, 75
IRQ, 308

Joysticks, 343-345
JMP, 228-230, 232, 244, 254, 270, 308
JSR, 228-230, 233, 244, 255, 268, 270

KERNAL, 2, 94, 209, 228-230, 308, 268-
306, 348-358

Keyboard, 93-98
Keywords, BASIC, 29-92

LDA, 218-220, 233, 245, 255
LDX, 233, 245, 255
LDY, 233, 246, 255
LEFT$function, 32, 56, 375
LENgth function, 32, 57, 375
Less than, equal to or, 3, 12-13, 16
LETstatement, 32, 57, 375
LIST command, 32, 58, 375
LISTEN,272-273, 285
LOAD, 272-273, 286
LOAD command, 32, 59-60, 370, 375
loading programs from tape, disk, 59-60,

337-338, 340-342
LOGarithm function, 32, 61, 375
Lower case characters, 72-74, 105
LPX (LPY), 348
LSR, 233, 246, 255

Machine language, 209-334, 411-413
Mask, 92
Mathematics formulas, 394
Mathematical symbols, 3, 6-17, 394
MEMBOT, 272-273, 287
Memory maps, 212, 262-267, 272-273,

310-334
Memory map, abbreviated, 212
Memory reallocation, 101-103
MEMTOP, 272-273, 288
MID$ function, 33, 61, 375
Modem, xiii-xviii, 339-340
Modulation, 183, 207-208
Multiplication, 3, 10-11
Music, 183-208

NEW command, 18, 33, 62, III, 117, 185,
187, 375

NEXT command, 20-21, 33, 39, 47-48,
62-63, 77-78; 86, 110, 155-156, 165-
166, 169-171, 198-199,309,375

NOP, 233, 246, 255
NOT operator, 13-16, 33, 63-64, 375
Note types, 190
Numeric variables, 7-8, 26

ON (ON. . . GOTO/GOSUB) statement, 33,
64, 375

OPEN, 272-273, 289
OPEN statement, 33, 41, 65-67, 75-76, 85,

94, 337-339, 349-352, 375
Operating system, 210-211
Operators, arithmetic, 3, 9-12, 16
Operators, logical, 13-16, 31-33, 35-37,

63-64, 68, 374-375
Operators, relational, 3, 10-12, 16
OR operator, 13-26,33,68,101-102,104,

106,115,118,120,122,126-127,129,
134, 136-137,375

ORA, 233, 247, 255

Parentheses, 3, 8, 30, 33, 83-84, 88, 375
PEEKfunction, 33, 69, 93, 101-102, 104,

106, 108-111, 115, 118, 120-122, 126-
130, 134-137, 145, 150, 159-160, 176-
177, 180, 185,211,361,375

Peripherals, (see I/O Guide)
PHA, 233, 247, 255
PHP, 233, 247, 255
Pinouts, (also see I/O Pinouts), 363, 395-

397
PLA, 233, 248, 255
PLOT, 273, 290
PLP, 233, 248, 255
POKE statement, 25, 33, 69-70, 94, 101-

102, 104, 106, 109-11!, 115-116 118,
120-123, 126-130, 134-137, 150, 153-
161, 165-166, 168-170, 172-173, 177-
178, 180, 184-186, 194, 198-199, 204-
205,211,220,309,361,375-376

Ports, I/O, 214, 335-375, 395-397

POSition function, 33, 70, 375
Power/Play, xvi, 390
PRINT statement, 13-15, 18-22, 25, 33-54,

56-61, 63, 68-75, 79-80, 83-84, 87-89,
94-96, 109, 168, 171, 210, 213, 220,
375

PRINT# statement, 33, 40-41, 75-76, 85,
94, 337, 340-341, 348, 353, 375

Printer, xv, 338-339
Program counter, 214
Program mode, 3
Prompt, 45

Quotation marks, xi, 3, 23, 72, 95, 337
Quote mode, 72-73, 95-96

RAM, 49, 100- 101, 104-105, 107-108,
110-111, 117, 122,260-262,269,340

RAMTAS, 273, 291
Random numbers, 53, 80
RaNDom function, 33, 43, 53, 80, 375
Raster interrupt, 131, 150-152
RDTIM, 273, 291
READST, 273, 292
READ statement, 33, 42, 76-77, 111, 170,

309, 375
Release, (see AlD/S/R)
Register map, CIA chip, 428
Register map, SID chip, 461
Register map, VIC chip, 454-455
REMark statement, 25-26, 33, 37-38,

41-42, 45-46, 50, 77-78, 93-95, 101,
118,198-199,338,340,356,375

Reserved words, (see Keywords, BASIC)
RESTOR, 273, 293
RESTORE key, 22, 92, 126, 353
RESTORE statement, 33, 78, 375
RETURN key, 3, 18, 22, 41, 50-51, 74,

93-97, 154-155, 166,217,220,336-337,
370

RETURNstatement, 33, 51-52, 79, 85, 175,
375

ReVerSe ON, OFF keys, 97
RIGHT$ function, 33, 79, 375
ROL, 233, 248, 255
ROM, 261, 268-269
ROM, character generator, 103-111, 134
ROR, 233, 249, 255
RS-232C, 335, 348-359
RTI, 233, 249, 255, 308
RTS, 233, 249, 255
RUN command, 33, 40, 59, 81,113,154,

375
RUN/STOP key, 22, 41-42, 52, 58, 86, 92,

126, 220, 353

SAVE, 273, 293-294
SAVE command, 34, 81-82, 375
SBC, 233, 250, 255
SCNKEY, 273, 295
SCREEN, 273, 295-296

INDEX 485

Screen editor, 2, 94-97, 211
Screen memory, 102- 103
Scrolling, 128-130, 166
SEC, 233, 250, 255
SECOND, 273, 296
SED, 233, 250, 255
SEI, 233, 251, 255
Serial port (IEEE-488). 262, 331, 333, 362-

366, 432-433
SETlFS, 273, 297
SETMSG, 273, 298
SETNAM, 273, 299
SETTlM, 273, 299-300
SETTMO, 273, 300-301
SGN function, 34, 83, 109, 375
SHIFT key, 4, 30, 72, 74, 94, 96-97, 168,

220
SID chip programming, xiv, 183-208
SID chip specifications, 457-481
SID chip memory mop, 223-328
SINe function, 34, 83, 375
Sound waves, 186-187, 192- 196
SPaCe function, 27, 34, 83-84, 336, 375
Sprites, x, xiv, 99-100, 131-149, 153-182
Sprite display priorities, 144, 161, 179
Sprite positioning, 137-143, 157-161, 177
SQuare Root function, 34, 84, 375
STA, 221, 233, 251, 255
Stack pointer, 214, 222
STATUS function, 34, 84-85, 354, 375
Status register, 214, 354
STEP keyword, (see FOR. . . TO), 34, 86
STOP, 273, 301-302
STOP command, 34, 41, 86, 375
STOP key, (see RUN/STOP key)
String arrays, constants, variables, 4, 6-9
String expressions, 9, 17
String operators, 9, 16-17
STR$ function, 34, 87, 375
STX, 233, 251, 255
STY, 233, 252, 255
Subroutines, 222, 228-229, 270, 307

486 INDEX

Subtraction, 3, 10-11, 16
Sustain, (see AlD/S/R)
SYS statement, 34, 87, 121, 307, 375

TAB function, 27, 34, 45, 88, 336, 375
TANgent function, 34, 88, 375
TALK, 273, 302
TAX, 233, 252, 255
TAY, 233, 252, 255
THEN keyword, (see IF . . . THEN). 34
TIME function, 34, 89, 375
TIME$ function, 34, 89, 375
TKSA, 273, 307.-303
TO keyword, (see FOR. . . TO). 34
TSX, 233, 253, 255
TXA, 229, 233, 253, 255
TXS, 233, 253, 255
TYA, 229, 233, 253, 255

UDTlM, 273, 303
UNLSN, 273, 304
UNTlK, 273, 304
User port, 355, 359-362
USR function, 34, 90, 307, 375

VALue function, 34, 90, 375
VECTOR, 273, 305-306
VERIFY command, 34, 91, 375
Vibrato, 203
Voices, 187-191
Volume control, SID, 186

WAIT statement, 13-14, 34, 92, 375

XOR, (see WAIT statement). 13-14
X index register, 213, 223-224

Y index register, 214, 223-224

Z-80, (see CP/M)
Zero page, 221-222, 358-359

SIMPlE VARIABLES

COMMODORE 64 QUICK REFERENCE CARD

Type Nomf! Ilongf!
Real XV z1.7014118JE+38

: 2.93873588E- 39

Integer XYO/O:32767
String XY$ 0 to 255 characters
X is a letter (A-I), Y is a letter or number «().9). Variable names
can be more than 2 characters, but only the first two are recog-
nized.

ARRAY "'RIAILES

Type

Single Dimension

Two.Dimension

Three-Dimf!nsion

Nome

XY(S)
XY(S,S)
XY(S,S,5)

ALGEBRAIC OPERATORS

Arrays of up to .I en elf!mf!nts (subscripts ().IO) can be used
wf1ere nef!df!d. Arrays with more than ele...en elements need to
be OIMf"nsioned.

== Assigns value to variable

- IIIegotion

bponentiation

;,. Multiplication

/ Diyision

+ Addition

- Subtraction

RELATIONAl AND LOGICAL OPERATORS

Equal
< > Not Equal to
< Less Than
> Greater Thon

< = Less Than or Equal To

> -Greater Than or Equal To

NOT logical "Not"
AND Logical "And"
OR Logical "Or"
Expression,equals I if true, 0 if false.

SYSTEM COMMANDS

LOAD "NAME"

SAVE "NAME"

LOAD "NAME",8

SAVE "NAME" ,8

VERIFY "NAME"

RUN

RUN lc;:JtX

STOP
END
CONT

PEEK(X)

POKE X,Y

SYS XXJOtX

WAIT X,Y,Z

USR(X)

loads a program from tope

Saves a program on tope

Loads a program from disk

Sa"'f!S a program to disk

Verifies that program was SAVEd

without errors

Executes 0 program

Executes program stoning at line

"""
Holts execution

Ends execution

Continues program execution from

line where program was halted

Returns contents of memory

location X

Changes contents of location X

to ...alue Y

Jumps to execute a machine language

progrClm, stoning at JOUUI.X

Program w~Tts until contents of

location X, when eaRed with Z and

ANDed with Y, is nonzero.

Posses value of X to a machin.

language subroutine

USf
LISTA-8
REMMessage

EDmNG AND FOIMATT1NG COMMANDS

TABCX)

lists entire program

lists from line A to line 8

Comment m.ssoge can be listed but

is ignored during program execution

Used in PRINT statements, Spac.s X

positions on Icreen

SPe(X)
POS(X)
CLRlHOME

PR.INTs X blanks on line

Returns current cursor position

Positions cursor to left corner of

screen

Clears screen and places cursor in

"Home" position

Insens Space at current cursor

position
Deletes character at current cursor

position

Wf1en used with numeric color key,

selects text color. May be used in

PRINT statement.

Moyes cursor up, down, left, right

on screen

When used with SHIFT selects

b.tween upper/lower case and

graphic display mode.

When used with numeric color key,

selects oplionol text color

SHIFT CLRlHOME

SHIFT INST/DEL

INST/OEl

CTRL

CRSR Keys

Commodore Key

ARRAYS AND STRINGS

DIM A(X,Y,I) Sets maximum subscripts for A;

reserves space for (X+I)-(Y+I)-(Z+I)

elements stCirting 01 A(O,O,O)

Returns number of characters in X$

Returns numeric yolue of X,

con...erted to a string

Returns numeric ...olue of A$, up to

first nonnumeric character

Returns ASCII charocter whose code

is X

R.lurns ASCII cod. for first

character of X$

Returns lefrmOlt X characters of A$

Returns rightmost X characters
of A$

Relurns Y characters of A$

stoning 01 character X

UN (X$)
STR$(X)

VAl(X$)

CHR$(X)

ASC(X$)

LEFT$(A$,X)

RIGHT$(A$,X)

MIO$(AS,X,Y)

INPUT/OUTPUT COMMANDS

INPUTAS OR A PRINts '?' on $Creen and waits for

user to enler a string or yolue
INPUT"ABC";A PRINTsmessage and waits for user

to enter yalue. Can also INPUTA$
GETAS or A W:::Iitsfor user to type one.

character yolue; no RETURNneeded
DATAA,"B",C Initializes a let of yalu.s thct

can be used by READstotement
READASor A Assignsnext DATAyolu. to ASor A
RESTORE Resets data pointer to start

READingIhe DATAlist again
PRINT"A- ";A PRINTsstring 'A- ' and value of A

';' suppresses spaces - ': tabs data
to next field,

PROGRAM fLOW

ooTO X Bronch'el to line X
IF A=3 THEN 10 IF assertion is true THENexecute

following port of statement. IF
folse, execute next line number

FOR Att. I TO 10 Executes all stot.ments between FOR

STtP 2 : NEXT and corresponding NEXT,with A
going from I to 10 by 2. Step size
is I unless specified

NEXTA Defines end of loop. A is optional
ooSUB 2000 Branches to subroutine stoning 01

line 2000
RETURN Man:s end of subroutine. Returns 10

statement following most recent
GOSUB

ON X OOTO A,B Bronches to Xth line number on
list. If X = I branch.s to A, etc,

ON X OOSUB A,8 8ranches to subroutine at Xth line
number in list

c~ commodore
COMPUTER

-
Commodore Business Machines. Inc.-Computer Systems Division.

487 Devon Park Dnve. Wayne. PA 19087.

DISTRIBUTED BY

Howard W. Sams & Co., Inc.
4;100W. 62nd Street, Indianapolis, Indiana 46268 USA

$19.95/22056 ISBN 0-672-22056-3 --

	c64-programmers_reference_guide-00-toc_introduction.pdf
	c64-programmers_reference_guide-01-basic_programming_rules.pdf
	c64-programmers_reference_guide-02-basic_language_vocabulary.pdf
	c64-programmers_reference_guide-03-programming_graphics.pdf
	c64-programmers_reference_guide-04-programming_sound.pdf
	c64-programmers_reference_guide-05-basic_to_machine_language.pdf
	c64-programmers_reference_guide-06-input_output_guide.pdf
	c64-programmers_reference_guide-07-appendices.pdf
	c64-programmers_reference_guide-08-schematics.pdf

